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Irreducible representations of compact groups can be partitioned into three classes (character test
+ ,0, — ). This classification is the same for real, complex, and quaternionic representations and
in all three cases a peculiar, type-adapted form of the representation matrices may be chosen

(t reps). In this paper it is shown how to construct ¢ reps of semidirect products G & g starting with
t reps of G and ¢ reps of some covering groups of subgroups of g. The advantage of using 7 reps
shows up in that the factor system of the little cogroups is real in two of three cases and that real,
complex, and quaternionic representations are obtained simultaneously. The method is
specialized to direct products and generalized to induction from normal subgroups.

PACS numbers: 02.20. 4+ b

1. INTRODUCTION

Matrix representations of compact groups irreducible
over the field of complex numbers can be divided into three
disjoint classes: the representation either can be brought into
real form, or is inequivalent to its complex conjugate, or is
equivalent to its complex conjugate, but cannot be brought
into real form. This partition does not only hold for complex
representations but is also valid for real and quaternionic
representations.'? No matter what representation field is
chosen, belonging to a certain class means always that the
representation is essentially a real or a complex or a quater-
nionic matrix representation. This fact is often obscured by
similarity transformations but it is always possible to make
the intrinsic algebraic structure transparent: If the field
characterizing the type of the representation is a subfield of
the representation field {e.g. RC C) this is achieved by find-
ing a matrix representation with elements in the subfield. If
on the other hand the representation is characterized by an
extension of the representation field (e.g. Q D C) then the ma-
trix can be composed of small square matrices each having a
peculiar structure which is typical for the extension field.

To choose type-adapted representations is to eliminate
redundant information from the beginning. In fact, as can be
seen from the definitions given in Sec. 2, this choice reduces
the number of real parameters needed to fix a matrix repre-
sentation by { for complex representations {averaged over all
three types) and by 3 for noncomplex ones. To consider real
and quaternionic representations of a group along with the
familiar complex ones is both of mathematical and physical
interest. For these representations have been shown to be
equivalent to the combination of a complex representation
and a commuting antiunitary operator and, if chosen in a
type-adapted form, to simplify the matrix representation of
invariant operators.'* It therefore seems worthwhile to dis-
cuss the construction and properties of type-adapted repre-
sentations over the reals, the complex numbers, and the qua-
ternions. The topic considered in this paper is the
construction of type-adapted representations of semidirect
product groups. In this problem the advantage of the repre-
sentations considered here shows up in that the factor sys-
tem of the little cogroups is real in two of three cases and that
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real, complex, and quaternionic representations are ob-
tained in one run.

2. TYPE-ADAPTED REPRESENTATIONS (¢ REPS)

We consider matrix representarions of compact groups
over a (skew) field F’ of characteristics zero (reals, complex
numbers, quaternions). A matrix representation with ele-
ments from F’ is called real if F' = R, complex if ' = C, and
quaternionic if F* = Q. It is said to be of F type and adapted
to its type if one of the following conditions is satisfied:

(i) If F = F’ the matrices Dy. (x), xG, are.norm preserv-
ing and absolutely irreducible. A norm-preserving matrix is
composed of orthonormalized row (or column) vectors, the
components of which are elements of F'. Therefore norm
preserving means orthogonal if I’ = R and unitary if I’ = C.
For F' = QQ, where the term hyperunitary has been intro-
duced, care must be taken of the noncommutativity of the
multiplication. The term “absolutely irreducible” means
that it is impossible to find a norm-preserving matrix 7 such
that the matrices 7Dy (x)T ', x€G, all decompose into a
direct sum of smaller matrices, impossible even if the ele-
ments of 7 are taken from an extrension field F* (CF’).

(it) If F CF’ the matrices Dy. (x) coincide with the matri-
ces considered in (i). This implies, for instance, that a comlex
representation (F' = C) of R type (F = R) has to be real.

(iii) If F D F’ the matrices Dy.(x) are obtained from the
matrices Dy (x} considered in (i) by replacing the matrix ele-
ments (belonging to F) by small square matrices (with ele-
ments from F'). This is done according to one of the follow-
ing conventions (cf. Ref. 2):

a+ib<—+Rc[a+ib]=<a—b), (2.1)
b a
a+ib+jc+ kde—Ra+ib+jc+ kd ]

a —b —-¢ -

_ b a —d c 29
e d a —b}) 22)
d —c¢ b a

a+ib + je + kd«—>C[a + ib + jc + kd ]
B a+ib c+id)

—c+id
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Herea,b,c,deR, and icC and ijj,k, €Q are the familiar units of
these fields. The matrices obtained by one of the substitu-
tions (2.1-2.3) are also norm preserving and irreducible over
F’ (but not over F).

Summarizing the above definitions one sees that ¢ reps
of R type are always real; those of C type are complex (F = C
or Q) or real matrices composed of submatrices of the form
(2.1} (F" = R); and the t reps of Q type are quaternionic
(F" = Q) or composed of the complex 2 X 2 matrices (2.3)
(F" = C) or of the real 4 X 4 matrices (2.2) (F' = R). To make
the notation more concise we write R (x) instead of Dy (x), etc.
The upper index A labeling the equivalence class of the 7 rep
D *(x) is chosen to be A (or o) if D (x) is of R type, B (or B) if
D (x)is of Ctype, and I" (or y) if it is of Q type. The same labels
can be used for all three representation fields; only if F' = C
must the label B be replaced by the pair B + ,B — . In this
case the ¢ reps are assumed to satisfy

[CBH(x)]*=C®(x) for all xG. (2.4)
Note that these representations are equivalent over Q. We
choose

0°(x)=C®*(x). (2.5)

To each representation D (x) (not necessarily irreduci-

ble) a character y (x) can be assigned. This is done by the
definitions

Ywlx) = trace R (x), (2.6)
Yolx) =trace C(x), (2.7)
Y (x) = real part of trace Q (x). (2.8)

(The real part of a + ib + jc + kd is @). Taking into account
the definition of 7 reps this implies
Xn=XC=X06 (2.9)
Xw=x2"+xe =2y, (2.10)
The characters form a basis for the set of square-integrable
class functions defined on G. However to be complete also

for F' #C this basis has to be supplemented by functions ¥®
defined by

Yrix) = 22R Trro) = —ix@*(x) + v~

= 2;,[ —iQ%(x) + Q% x)*] =293 x). (2.12)

This set is then closed under convolution if the convolution
Sfxg of two functions f,geL *(G ) is defined by

fraly) = M, flx)glx"y),
where M, h (x) is the normalized Haar integral of A.
Because of Egs. (2.9-2.11) the quaternionic characters
coincide with the real ones up to constant factors.

(2.13)

xr=pxe P'=1 p°=2 p'=4 (2.14)
The real characters satisfy

YRR =8 xrm*) (2.15)

p*m* =dim R *(x) = yg(e). (2.16)

Moreover
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X #*¥r = Srstr(m®) ),

Ya*YR = Beex Rlm°) . (2.17)
These equations imply the orthogonality relations

(X;‘(’X/l:> = ‘SAA’pA’ <X?{, '/’3) =0’

(YR, ¥R ) = 25ps:, (2.18)

because the ys and the s are continuous functions, /(e
=0, and
(f,8) =(8&f) =fxgle) for fgeL*GR).  (2.19)
The characters can be used to determine the type of a

given irreducible representation D since the real numbers
ty defined by

M ytx?) =14, (2.20)

are positive for A = A, zero for A = B, and negative for
A = I'. We therefore arrive at the following classification
scheme:

type kind Y test labels

R Ist + A«

C 3rd 0 B,S {2.21)
Q 2nd - I,y

3. CONSTRUCTION OF ¢ REPS

It has been shown in Ref. 3 how to obtain ¢ reps from a
given set of complex unitary representations. There it also
has been pointed out that real # reps can be found construct-
ing a suitable basis, in the following called ¢ basis, of the real
groupalgebra A, (G ). Herethe elements acAy, (G ) are defined
as real linear combinations of group elements; more precise-
ly

a = M, a(x)x,ac L*G,R), (3.1)
where x—x is the regular representation of G (cf. Ref. 2, Sec.
2). The goal is to find elements e/, €Ay (G ) satisfying

(e7k)" = exs, (3.2)
exeyx =084, €55, (3.3)
and elements f€Ag (G ) behaving like the units of the field

which determines the types of the representation. That is, if
e” is defined by

et = Yej, = ("), (3.4)
J
then
A=A ff=et {3.5)
A=B: ff=e fF ="
(B = — & (iB) = —i° e%i® = i%® = ¥,
(3.6)

A= =e ff =i, f] =i, ff =k',
s r;r — il‘el‘ — il‘,

({P= —e,{i")f= —i, el
i"j” = — jTi" = k', and cyclic permutations of i;j,k.
(3.7)
The e’s and the f’s are related by
exfa =13 e
=0 for A #A". (3.8)
P. Kasperkovitz 2



If the group G is finite the determination of a ¢ basis
{e/. £5] is a purely algebraic problem. In this case the ele-
ments €7, can be calculated computing and factoring (over
R!) the minimal polynomials of a sufficiently large number of
self-adjoint elements of Ag (G ). The finer and finer decompo-
sition of self-adjoint idempotents ends up with idempotents
¢’ ( = eJ,) for which the only sef-adjoint elements of the form
e'ae’, acAg (G ), are the real multiples of e’ (primitive idempo-
tents). Once the e7,’s are known the elements 7, J #K, are
determined from the elements e}, aez, # O (for details see,
e.g., Ref. 4). Finally the f’s are found by studying the struc-
ture of the division algebra consisting of all elements e&, aegy,,
acAg (G ). This algebra contains units 5, s = e aseq which
satisfy equations similar to one of the sets (3.5-7) but with e”
replaced by e3,. From these elements the fs are obtained by

fg = e./I‘O fA e eg,.
Seht),

The same methods work for a compact continuous
group G once the elements e” are known. However, to deter-
mine these elements, forming a countable set in this case,
nonalgebraic methods have to be used (functional anlalysis,
differential equations, etc.). This remark also applies to the
completeness relation.

acA,(G)a = z e/« foR ,/I‘S,Ko(a)’

AJKS

R s kola) = (m"p") " (efkfa)eR.  (3.9)
a,beAg (G ):(a,b) = (b,a) = M, a(x)b (x). (3.10)

If the e’s and the s are known the corresponding real ¢
reps,

R*(x)=R"(x), (3.11)
can be obtained either from

xe, f5 = Zef'xfg'R 7s0s(%) (3.12)

J'Ss’

or from

el = p'm MR s o) (3.13)
and

R ?s‘xr(x) =R gr [C?; (x)], (3.14)

Risxkrx) =R [Q %] (3.15)

Combined with (2.1-2.3) the last two equations do not only
show the peculiar structure of the real z reps R ®and R " but
also indicate how to obtain the nonreal ¢ reps from the real
ones.

4. SEMIDIRECT PRODUCTS

As in the familiar complex case it may be convenient to
construct the irreducible representations of a large group by
means of irreducible representations of smaller groups (e.g.,
subgroups) which are easier to construct or even already
known. The groups considered in this section are semidirect
products

G =G&g; G=[{EX)Y,.]} compact,

g=t{ex,p,..} finite. (4.1)
We focus on the construction of a ¢ basis of A, (G} which, as
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has been pointed out before, contains all relevant informa-
tion and is of more interest in applications than the corre-
sponding matrix representation. The applications we have in
mind are real ¢ reps of symmorphic space groups which are
of interest in some problems of solid state theory (e.g., lattice
dynamics, see Ref. 3). In the following discussion G is neither
assumed to be abelian nor finite but a complete set of real ¢
reps of G or, equivalently, a 7 basis of Ag (G ) is assumed to be
known. The construction, described under Secs. 4A-4F,
parallels the construction of complex unitary irreducible re-
presentations of semidirect products.**

A. Equivalence of freps of G

The ¢ reps of G may be partitioned into disjoint classes
according to the equivalence relation

A~A" iff xet'x ' =e?
It should be noted that the finite-dimensional two-sided
ideals

AR (G) = e"AR(G) = Ay (G )e" (4.3)

and A} (G ) are isomorphicif A ~ A ’. Accordingly if x inter-
twines A and A " as indicated in (4.2) and {e7,,£¢] is a ¢ basis
of AR (G)sois [ xef x ', xfx '} of AR (G ). Thefirst task in
constructing a ¢ basis of Ay (G) is to determine the equiv-
alence classes {A | of  reps of G and to fix a set of representa-
tives A€{A }, one for each class.

for some xeg. (4.2)

B. Little cogroups

For each representative A the little cogroup g” is the
subgroup of g defined by

xeg” if xe*x~'=c¢" for all central elements of Af(G).
(4.4)

If A = Aor I"the central elements are all real multiples of e*.
Ifhowever A = B there are two linearly independent central
elements, viz. e® and i® [cf. Eqgs. (3.3-3.8)]. In this case a
second group, denoted by g is defined by

xeg® iff xe®x~'=¢® and xi®x7'= +i® (4.5)
If there does not exist an element xeg which transforms i®
into — i® then g® = g®. If such an element, say X, exists then
g% = {g%xg®} = [¢®gPx '}, i.e, g% is a normal subgroup
of g° of index 2. The group g® is then called the proper little
cogroup and g° is called the full little cogroup. We note in
passing that the (proper) little cogroups are the same groups
as encountered in the construction of complex

representations.

C. Coverings of little cogroups

Toeach xeg” an inner automorphism of the ideal A{ (G)
is assigned through the mapping a"—xa"x ™!, transforming
the ¢ basis {e}y, £} of A% (G ) into the equivalent basis
[xefxx ™', xfix~'}. Since the automorphism is inner (cf.
Ref. 2, Sec. 4) it is possible to find for each xeg” and element
u{x)eAz (G ) such that

u” (x)"u’ (x) = u’ (xju” (x) = e, (4.6)
' (4.7)

xefex ! = u? (x)Tefu? (x).

P. Kasperkovitz 3



The explicit construction of an element u corresponding to
an inner automorphism (here given by x) has been described
in detail in Ref. 2, Secs. 4 and 6B. This construction yields

u?(e) = ¢” and

for all xeg” if efy =e”. (4.8)

The last condition is always satisfied for abelian G’s. If G is
not abelian it is sufficient to construct the elements u”(x) for
the generators x,y,.. and to put u”(z) = u”(x)™u’(y)"-if

z =x"y"-. Now if xeg”?, u*(x)eAq (G ) is an element satisfy-
ing (4.6,7), and

i — l Stias )aSeR], (4.9)

then u”(x)xfx ~'u*(x)'eFy iff feFg. Moreover, since the
mapping f—u’{x)xfx ~ 'u?(x)" is invertible it is automor-
phism of the division algebra Fy : for F; ~R and F& ~Ciit is
the identical mapping (i® is invariant under g®!), and for Fj}
~( it is an inner automorphism since all automorphisms of
@ are inner. In this case there exists a unimodular quater-
nion geQ) inducing this automorphism and therefore an ele-
ment ¢’ (x)eF% such that

v (x)=e?

¢ (x)'q" (x) = ¢  (x)q" (x)" = ¢, (4.10)

0" (x)'ejxq" (x) = ely, (4.11)

u’ (x)xfex '’ (x) = q” (x)"fq" (x), (4.12)
the second equation following from (3.8). Putting

wix)=u"(x) for A =A,B,

=q*(xju’ (x) for A =T, (4.13)

we see that

xa’x ™' =w'(x)'a"w?(x) for all a’cA}(G) (4.14)
and that the factors in the definition of x*,

x* = wh{x)x = xw’ (x), (4.15)

may be interchanged because of w*(x)eA}(G ).
If x,peg and xy = z then y ™ 'x ™ 'z induces the identical
automorphism and w”(y)w"*(x)w"(z)" is an element of A7 (G)
commuting with all other elements of this ideal.
xyeg:w” (y)w? (x)w” (xp)’ = ¢ (x,y)e center of AZ(G).
(4.16)
Now if A = A or A = I" the center consists of multiples
of e" and ¢” is unimodular because of (4.6,10). Hence

A=AT: " xy) = +e. (4.17)
For A = B one has
cB(x,y) = €° cos ¢ (x,y) + i® sin ¢ (x,y)
= exp{i®¢ (x.y)}, ¢ (x.y)e[0,2m), (4.18)

i.e., the factors behave like unimodular complex numbers. It
seems to be unknown which phases can occur in (4.18) but it
has been shown already by I. Schur how to redefine the ele-
ments w so that the new factors behave like nth roots of
unity, # being the order of g®. The new elements W are given
by’

WwO(x) = exp{ — i®y(x)] wo(x), (4.19)
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where the angles ¢ have to be determined from

Plx) = g8~ 3.9 el (4.20)

If the elements W are used instead of w in {4.16,4.18) the
phases are found to satisfy

12| (x,y) = multiple of 2. (4.21)
Moreover
éxp) =0 if g° is abelian. (4.22)

In the following it is always assumed that the w’s are norma-
lized according to (4.19), if A = B, and that these normalized
ws are used in the definition(4.15) of the elements x°.

Having determined the (normalized) elements w”(x) for
all xeg” it is possible to define a group pg” by

pg* = multiplicative group generated by x*, xeg”.
(4.23)

The center of pg* contains the group

z" = multiplicative group generated by ¢*(x,y), x,yeg”,
(4.24)

and pg*/z"~g"; in this sense pg” is a covering group of g".
The symbol pg* has been chosen to indicate that, in an equiv-
alent terminology, this group could have been called a pro-
jective representation of g with factor system z. Since this
factor system is at most of order 2 for A = A,I"and at most of
order |g®| for A = B pg” is always a finite group.

D. treps of the covering groups

Let pg” be the abstract group defined by the isomor-
phism pg” ~pg*. The the next step is to construct real ¢ reps
of the groups pg” or ¢ bases of the algebras A, (pg* ). How to
obtain these objects has been indicated in Sec. 3: If complex
unitary irreducible representations of the group are known
they can be used to form real ¢ reps from which the #-bases
are obtained by Eq. (3.13). Likewise, since pg” is finite, the
algebraic methods outlined before can be used to construct
the ¢ bases directly. Moreover if pg” is itself a semidirect
product the strategy described in this section may be used to
reduce the construction of its ¢ bases to that of simpler
groups (see also Secs. 5 and 6).

Not all the ¢ reps of a group pg” are needed but only a
subset depending on the factor system z”. For let R (%) be a
real ¢ rep of pg* and % be the image of X in pg”; then the
elements

ejkff =PAmAMxR;s.ko(i)iA (4.25)
may vanish for pg* #g” since then the elements X" are not
linearly independent. All these linear dependences may be

traced back to those of elements of z*, i.e., to relations of the
form

S %a(%) = 0, a(¥)eR. (4.26)
A representation A of pg” is of interest if, and only if, all Egs.
(4.26) with R *(X) substituted for X are identically satisfied. In

terms of projective representations this means that only
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those irreducible representations are allowed which have the
same factor system as the original representations.

E. treps of the little groups

For the semidirect product groups considered here the
little groups may be defined as the semi-direct products
G* = G&pg”. For a fixed A and an allowable 4 Egs. (3.2-
3.8), (4.25), and (4.14 and 4.15) imply that the real linear
combinations of the elements

e?ngejj;cfj = j);cf?e./l‘l(f/s‘ = efkeﬁ:fls‘fé: (4.27)
form a two-sided ideal in A, (G"). This ideal does not neces-
sarily correspond to one single ¢ rep of G*, and even if it does,
the elements (4.27) need not constitute a ¢ basis. An obvious

exception is the case where one of the two representations
involved is of R type, e.g., 4 = A. In this case the elements

ek = €xep, =1, (4.28)
form a ¢ basis and
A 1 is of the same type as A. (4.29)

In all other cases the passage from (4.27) to t bases of minimal
two-sided ideals involves only linear transformations of the
elements f*f*, If, for instance, A1 = Bf one introduces the
idempotents

el®ir = 1[eBef + (- 1)i%°], x=0,1, (4.30)
and defines the units i®%* by

iBAx = {BelBflc — _ (_ 1)ife!BAIx, (4.31)
It is easily verified that these elements combined with

€%, = efxefel®llx, (4.32)

constitute tbases of the twoinequivalent zreps B 0and B3 1,
and that

Bpx is of C type. (4.33)
Next consider A4 = By. Choosing

e.?jZ.Kkl = e?xe}; eﬁ”, (4.34)

ebs”) = i[ePe” + i%i7],

el = 1[eBe” — ifi"],

e = ex”'j" =jrel},

el = —jreld = —el$"y, (4.35)

i%” = iB, (4.36)
one sees that the elements (4.34), (4.36) form a ¢ basis and that

By is of C type. (4.37)

Finally, if A4 = I'y, it is possible to define elements e/,
ebb” =1le"e” + i1 4§75 + kK'K7],

vl __ allyls ryl _ ollfyls r r
e([)lrl _e(l)oylly, e([nr] —e([x)"]j", e([)3”=e([,o”]k7,

Iyl — val Y13 r
e = —i'el"j", ell”
— _ ire([)(l)‘rlkr, e%‘rl [ j”e([)g”k”,
| rylt [ 7] [Tyl __ Qllylpily
e /"= ", el =el'Jlel)”, (4.38)

which can be used to define the ¢ basis

r — o I
el ki = ejxelell”. (4.39)
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Its structure shows that

(4.40)
This exhausts all possibilities since the remaining three cases
(AA = Ba,l'a,IB) are obtained from (4.27) and (4.34-4.36)
simply by interchanging the roles of A and A.

We note in passing that the 7 reps corresponding to the ¢
bases (4.31,4.32), (4.34,4.36), and (4.39) can also be obtained
from the tensor products of the £ reps R * and R %, i.e., from
the matrices with elements

[R*(X)®R*(0)]ssekric = R JsxrX R fi(X), (4.41)
by orthogonal transformations involving only the indices
Ss,Tt. For AA = Bp this reads

5;«' R ‘?j.lr;.‘;(kl (X'i)

Iy is of R type.

= > R $ELR s kr (X)RE,(BRPEL.,,  (442)
S'sT't’
where R '8 is the matrix

0 1 1 0

s _ L [~-1 0 01

v2l 1 0 0 1

o1 —-1 0

Rows: Tt = 00,10,01,11.

Columns: xs = 00,01;10,11. (4.43)

Similar results hold for A = y, where

6mm’ R .?i{S.Kkls (X'i)

= 2 R .[S'/"x}",]mLSR ./I‘S’,KT’(X R };',kz'(i)R [7{"3"],m’1s ,(4.44)
S'sT't’
and m is an index labeling the identical copies of R 7 appear-
ing in the decomposition of R* @ R 7.

A=8B:m=0,1. (4.45)
A=TIm=0,1,2,3. (4.46)
The transformation matrices are given by
R BY]
0 0 0 —1 01 0 0
( 0 0 1 0 -1 0 O O\
0 0 1 0 1 0 0 0
1 0 0 0 1 01 0 0
2 0 -1 0 0 0 0 0 —1
1 0 0 0 0 0 1 0
\— 1 00 ©0 001 0 /
0 —-1 0 0 0 0 O 1

Rows: Tt = 00,10,01,11,02,12,03,12.

Columns: mls = 000,001,010,011;100,101,110,111.
E I J

—1I E K -—-J
-J —-K E Iy
-K J —-I E
E=RQ[1], I=R°[i], J=R?[j], K=R°[k],
R ?[q], seeRef. 2, Eq. (2.30).

RUM =y (4.47)
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Rows: Tt = 00,10,20,30,01,..,31,02,..32,03,..,33.

Columns: ml = 00,01,02,03;10,..,13;20,..,23;30,..,33.
(4.48)

Some more manipulations are needed if A = B and g®
#g°2. Since g% is a normal subgroup of g° = {g%,xg%} = {£5,
g5x~'} and the elements of this group map central elements
of A} (G ) onto central elements the covering of the proper
little cogroup, pg®, can be extended to a covering of the full
little cogroup, namely pg ® = {pg®xpg®} = {pg®pg®x '}.
Therefore it is possible to define in an obvious way a proper
and a full little group in this case. The (allowable) ¢ reps of G®
may be obtained from those of G® but their explict construc-
tion depends on whether the quantity 7 defined by

eB/l (kg Bl Wx—1 — ;2B (K)’ (449)

vanishes or not. If it does a ¢ basis of G® is given by the
following expressions:

T=0

e Nxkin = X'e5 kX" Non=0,1, (4.50)
iB/l (K10 — iBA {#) + iiB/{ [K"if I. (451)
BA («)0 is of C type. (4.52)

If 7520 the situation is slightly more complicated. The first
thing to be observed in this case is that the mapping

a—Xax ', defined for all acAB**? (G®), is an automorphism
of this ideal. This automorphism is an outer one because of

(4.28) with A—>a, A—B, (4.31), (4.36), and Xi®x ~' = —i®.
Therefore
XPAWR T = BRI, {4.53)

There exists an element #%* ¥'eAB* ¥ (GB) (constructed by the
same method as the elements u”(x), xeg”, before) such that

l—lB/l (W,

l—lB/{ lK)TiB/l (K}l—lB/l {

¥ ABA («) =BA{x) _ g BAN !
€L Kk Y = X€ir kX

M= jBA (4.54)
Accordingly defining

)—(BA ) ___ §BA lk‘i)—" (455)
one has

RBAWIEBALT _ xBAWIIEBAM . oBA (N‘!, {4.56)

%84 (K;eJBj(/an;;:>Kk [ BT eij(Am:»ﬂ . (4.57)

XOAWBAMIEBAWT — _ {BAn (4.58)
and

[XB4W]2 = exp{im g {, 6€l0,2m), (4.59)

the last equation following from the fact that (4.49) is an
element of AS**“ (GB) and induces the identical mapping.
Combining (4.58) and (4.59) one finds exp{ + i®*'76 }

= exp{ — i®4™@ ; therefore § = 0 or 7 and

— 1Y -
RIBAWI2 = peBAI o + 1.

(4.60)
Taking into account Eqs. (4.56-4.58,4.60) the corresponding
¢ bases of GP are easily constructed.

7=1:

BA)(— 1) _ ,BA(x) .
€L kkil) = €L KK(I)>

(4.61)
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jBA0a— 1) — jB4 (K)’ jB/l (el — 1) — B4 (K)’
KBA W — 1) — §BA igBA L, {4.62
BA (k)( — 1) is of Q type. (4.6
= +1

SNkl = e Te €N (4.64
e([)g,{ ] (1/2)[eBA («) + iB/“K)iBi(x)]’

elBAMI — (1/2)[eBHW — jB4 (WgBA W]

elBA) — glBANNBAM) . _ B4 Wg[BA ()

e([)?/l W - _ iBMK)e([SA «)1 — e[l?i (K)]ie,{ M; (465)
BA(k)(+ 1) is of R type. (4,60

F. t reps of the semidirect product group

The final step is to induce the 7 reps of G = G&g fron
the ¢ reps of the (full) little group. To this end g has to be
decomposed into cosets with respect tog” (or g 2, respective-
ly) and a fixed set of coset representatives has to be chosen
First assume that

A #£B or A =B, g% =g%

g= {y(())gA, y(l)gA’m}’ y(O) =e. (461)
A t basis of G is then given by
e.llj?lf)(;,)ll(k(llp = y(P)e?j(AL(')(,'Kk(l)y( A=l (4.65)
ﬁAMKH — y(P)f;M gl P — ! (4.69)
2
and
{AA (x)} is of the same type as A4 (x). (4.70)
The remaining cases are handled in an analogous manner.
A =B, g_B#gB:
§= { (O)g-B! ymg-s’.__}, y(0)=e. (4.71)
e’J,?L{)((f\)/T}IP,Kk(n(n)p = Y(P]e?jfl_[')(();/).Kkm(n)y( Al (4.7%)
ﬁBMxiTl — y(p)tffl (~lry(p)— 1 (4.73)
2
The type of {BA (k)7} isgivenby 7 (=0, £ 1). (474

This concludes the construction of ¢ reps of semidirect
products. That the  bases obtained this way satisfy Eq. (3.2)
is obvious from their construction (x' = x~'). That (3.3)
holds true follows from

if xég”;
if xég— B;
these equations also show that the fs of the ¢ bases of G

behave like the fs of the ¢ bases of the little groups G* {or G)
which explains propositions (4.70,4.74). That this methodis

exhaustive may be shown by successively proving the con-

pleteness of the bases {e/fix | all reps 4, all xeg} and
(¥ el cx iy B4 Wy 1 | all representatives A, al-l al-
lowable representations 4 («)(7), all coset representatives

'}

A #B: a'xb* =0
A =B: a%b® =0

(4.75)
(4.75)

[$2)

P. Kasperkovitz



5. DIRECT PRODUCTS

The above considerations are greatly simplified if Gisa
direct product of the form

G =G xg, G,g compact. (5.1)

In this case Xx = xX for all XeG, xeg, {A } = A, and g
= pg”" = g; therefore the construction outlined above re-
duces to Sec. 4E once the ¢ reps of G and g are known. If these
representations are denoted by A and A one finds [cf. Egs.
(4.29,4.33,4.37)]

Aa,ly are of R type;

AB,Ba,BBk,By,I'S are of C type;

Ay,I'a are of Q type. (5.2)
This is in agreement with the character test (2.20) because

the character of the representation R * ® R * containing the ¢
rep R 4" is y ¢ **(Xx) = ya (X Jyr ().

6. INDUCTION FROM NORMAL SUBGROUPS

It is also possible to generalize the methods of Sec. 4 to
include the construction of ¢ reps by induction from ¢ reps of
a normal subgroup. Let G, G, and g be related by

G = compact normal subgroup of G,
G/G~g (finite), (6.1)

and let “‘g” be a fixed set of coset representatives with respect
to G.

G = {Ge,Gx,Gy, -}, “g” = {exy,}. (6.2)
The product of two coset representatives is then given by
yx=Z[xyklxyl, Z[xyleG, z[x.yleg”, (6.3)

where the elements Z and z are uniquely determined by x and
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y. Assume furthermore that the scheme of Sec. 4 has been
followed up to Eq. (4.15) but with g replaced by “g” every-
where, and that the elements w"(x)eAp (G ) satisfying (4.14)
have been constructed for all xe*‘g”. Then

Xyt =y, e (xy) = WA W’ (xI1Zw (2,
Z=2Z[xyl, z=:z[xy], (6.4)
because of (4.14) and (6.3). But

Yy~ 'x7'Z[xylz[xyla’z[xy] " 'Z{x,p] " 'xy

=c'(xpatet(xy)f =a' for all a%eAR(G), (6.5)

which again implies
¢*(x,y) € center of Aj(G). (6.6)

Hence the conclusions following (4.16) are again valid and
the further scheme of Sec. 4 can be applied as it stands. Com-
bined with the content of this section this method shows,
among other things, how to construct ¢ reps of both symmor-
phic and nonsymmorphic space groups.

'F. J. Dyson, J. Math. Phys. 6, 1199 (1962). This article not only covers
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Type-adapted subduction matrices
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If an irreducible representation is restricted to a subgroup it becomes reducible in general. The
matrices transforming this reducible representation into a direct sum of irreducible constituents
are called subduction matrices. Their structure is discussed for real, complex, and quaternionic
representations where all these representations are assumed to show a peculiar structure
characteristic for the type of this representation (character test +,0, — ). The choice of these
type-adapted representations, a convention possible for all compact groups, considerably reduces
the number of parameters needed to fix a subduction matrix.

PACS numbers: 02.20. + b
1. INTRODUCTION

In the preceding paper' (referred to as I) it has been
shown how to obtain type-adapted representations (¢ reps) of
a group from (projective) ¢ reps of a normal subgroup. Here
we consider the inverse problem: How does a given ¢ rep A of
a group G decompose into ¢ reps A of a subgroup g (which
need not be normal}if A is restricted to g? The essential result
of this paper is that the matrix which transforms the (reduc-
ible) representation D * g into a direct sum of # reps D* can
be put into a form which is adapted to both A and all the A ’s
contained in this representation. That is, this so-called sub-
duction matrix can always be chosen to reflect the internal
algebraic structure {i.e., the type) of the representations in-
volved. Similarly to I, the problem is essentially solved if it is
solved for real ¢ reps because the complex and quaternionic
subduction matrices are obtained from the real ones accord-
ing to some simple algebraic rules (substitutions, transfor-
mations) depending only on the types of the representations
involved. It turns out that this method reduces the number
of real parameters needed to fix a complex subduction ma-
trix. As a byproduct we also find that the multiplicities of the
representations A contained in a representation A have to be
even in some instances or even multiples of four, if noncom-
plex representations are considered.

If G = g X g (direct product) the results of this paper can
be combined with those of I to find convenient Clebsch Gor-
dan matrices. For complex representations this problem has
been discussed extensively by R. Dirl.2 Although the reason-
ing differs our results agree where they overlap. But apart
from the different setting (noncomplex representations ver-
sus corepresentations, general subductions versus Clebsch
Gordan series) the present approach, at least in the author’s
opinion, makes the principle from which these results
emerge more transparent. It is simply the fact that every
irreducible representation of a compact group is absolutely
irreducible over one of the three fields: the reals, the complex
numbers, or the quaternions.

In the following the notation of I is used and (I.n.m)
means Eq. (n.m) of I. For both G and g a complete set of  reps
labeled by A and A, respectively, is assumed to be given.

2. MULTIPLICITIES
» The multiplicities mg* are the nonnegative integers ap-

pearing in the decomposition
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S Dix)SEE =3 ®mg'Dilx)

GDg. 2.1

Every m{* is uniquely determined by the characters y 7 and
A

XF:

D{=rtrepof G, D} =trepofg;

F#C:

mt = My #(x)y # (/M y +(x)y +(x), (2.2)
F=C:

mgt =My tx)ex clx) = Moy ¢y ¢x)*. (2.3)

Equations (1.2.4), (1.2.6), and (I.2.3) imply trivial identities
like

meft =mpf-, mgtPt =mg P, etc. (2.4)
Taking into account
et =xk +Wh 2.5)

and using Eqs. (I.2.9-11), (I.2.18), one finds the following
interrelations of multiplicities, some of which are less ob-
vious.

maa — méa — mga,

mf =mP* =im{f,

A A A
mg? = imc" = 1mg?, {2.6)
my* =2mg*e =2mg”,

8 B B
myf =mBrPt 4 mgrP ¥ =mf,
B B 8
mg’ =me*? =1imgy, (2.7)

mp® =2m® = 4my”?,

mpf =2mP* =2m{?,
mby = mLY = mly. (2.8)

3. REAL SUBDUCTION MATRICES
The matrices appearing in Eq. (2.1) for F = R,
At = RAs) (3.1)

can be constructed combining the so-called projection tech-
nique*~® with a generalized Schmidt process.®’ The basic
idea of the projection technique is to write (2.1) in the form

RAxRA2=RAE|S omp*R*(x)|, (3.2)
2
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and to consider the columns of R *'# as (othonormalized)
vectors, R # (x) as an operator acting onto these vectors, and
[Z ® m3'R *(x)] as a matrix representation of the operators
R *(x). This alone would not be too advantageous but form-
ing the appropriate linear combinations the real vector space
of dimension p*m* spanned by the columns of R ## can be
shown to carry not only a representation of the group g but
also if its real group algebra Ag (g).

R*(a) = M, a(x)R *(x), (3.3)
; emg'R*(a) =Y ®mg*M,a(x)R"(x). (3.4)

Now the elements of a ¢ basis have an extremely simple ma-
trix representation, viz.

Rj/t,ko(e}l’;(’) = ‘544'5;0517'5“': (3.5)
Rﬁ,ko(f?’l) = 5/1,1'5jk5ss" (3-6)

the remaining matrix elements (¢t 70) being related to (3.5,
3.6) by Egs. (1.2.1) and (1.2.2). The corresponding matrices
acting from the left on the column vectors are

E" =R"(el), (3.7)
FAA = RAfY), eg, I =RA(). (3.8)

Equations (3.2)—3.5) show that each column vector is an ei-
genvector of one of the projection operators E ** and that
the columns belonging to a certain A may be partitioned into
my” groups, the members of the groups being transformed
into each other under the action of the shift operators E i,
j#k,and FA" 5£0.

The peculiar feature of the shift operators F!* " is that
they commute with the projection operators E i ¥ [cf. Eq.
(1.3.8)]. Moreover the column vectors F* %y, s =0, ..., p*

— 1, obtained from a given column vector v by application
of the operators F'** are mutually orthogonal and of the
same norm as v. These facts may be used to construct sets of
orthonormalized eigenvectors of a given projection opera-
tor; more generally, if one tries to find a complete set of
orthonormalized eigenvectors by a Schmidt process, this
process may be varied in such a way that in each step a pair
or a quadruple of vectors is obtained instead of a single one.
For A #A there exist, however, even more commuting shift
operators to implement this procedure. If A = B it is

IB® =RE5i®); (3.9
if A = it is the operators 17, J 7, K | defined by
ais‘,KT = (Era +1"0+ 7T c+ krd)JS,KT
=6,xR%[a+ib +jec+kd] =68,cR $rlq],
(3.10)
a b c d
-b a —d c
—c d a —b
—d -—c b

RPla+ib+jc+kd] =

a
(3.11)

The operators (3.9, 3.10) commute with all operators R * (X ),
XeG, and hence with all operators R *(a), acAg ( g). The exis-
tence of these operators indicates that the subduction matrix
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can be adapted to the type of A whereas the operators (3.8)
are responsible for its adaption to 4. To avoid linear depen-
dences members of both sets have to be combined into addi-
tional projection operators, the rest being used as shift opera-
tors. How this can be done is implicitly contained in Egs.
(2.7, 2.8); it is stated explicitly in Egs. (3.19)-(3.26) below.
Before entering into the details of the construction of

R 718 let us first fix the notation.

dimR*'® =dimR*=p*'m*;, p*=1,p2=2,p" =4

(3.12)
Labeling of the elements of R *(#
row index JS: J=0,, m* —1;
S=0,-p"—1;
column index jtm: j = 0,.., m* — 1; (3.13)
t=0,., ™M —1;

m =0, u** — 1.
Now let R * be a representation of g contained in R *ig, i.e.,
mg* 0. The rows of R *'# belonging to this A are then ob-
tained according to the following scheme:
(i) A subspace ¥ * of the real vector space ¥ consisting of
all columns with p”"m” components is characterized by a
projection matrix P4, i.e.,

VA= (vhluiel, Pl = ot ). (3.14)

The matrices P** are given below for all combinations of
types.

(ii) An orthonormalized basis of ¥'* is constructed by
means of a generalized Schmidt process. In each step a 74
tuple of vectors is constructed (cf. Ref. 7, Sec. 6A). The mem-
bers of a set are related by

vh, =S, t=0,, 7% — 1, (3.15)

the matrices S 7 being specified below, and there exist u**
such sets. One ends up with
A, AR

Ut = p*mit, (3.16)
orthonormalized column vectors var” (¢t = 0,--., 7% — 1;
m = 0, u™ — 1).

(iii) The rest of the columns belonging to A is obtained
applying the matrices E g, Eq. (3.7), onto the vectors vg,”
constructed in (ii), i.e.,

vpm = ESWlr,  j= Ot — 1. (3.17)

The matrix R *(# is obtained by constructing successively
the columns belonging to the different A ’s (with m{* 5£0) and
collecting them into a square matrix.

The matrices P** and S 7 needed for the explicit con-
struction are given in the following equations:

AA = Aa:
i PrM=Eg-

(ii) A*=1: SA==EWe (3.18)
AA = AB:

iy PM=EQP

i s (3.19)

(ii) =2 SA = EWB §AS _ A8,
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AA = Ay:
iy PA=EY"

(@) Ar=4; S =ERY, S} =1"7, (3.20)
Sérz.]wr’ S/S\Y= KA,
AA = Ba:
iy PP*=ED"
i
w-* e B abe 18 (3.21)
(i) 7P=2: §g°=EF §7*=1°
AL =Bg:
(i) first PB4 = pBFl+) then PBS = pBA(—I
where P8P ) = {[ES T IR BP1EQP. (3.22)
(i) =2 SPF=E®P ¥ =168
AA =By:
(i) PP =I[EB—-IPI®"IEQR".
(i) 7% =4: SF=E®", S¥r =107, (3.23)
S?Y=J(B)Y’ S?":K‘B)”.
Al =Ta:
iy Pr=Eg-
i) r=4 S{*=E", 8= 1",
S{a= __jl‘,sg‘az _'K—l“
{3.24)
Al =Tp:
(i) PP=4[ET+T'T"VP]EZ".
i) 7P=4 SP=E",SP=-1",
m_ _Jreré_ _gr
§P=-J',8; K. (3.25)

AA=Ty:
i) Pl‘r=%[EI‘_{_I'I‘I(F)r+jl‘](l‘)r_+_EI‘KtF)r]E(£)r_
(i) 7"=4 S{T=E"S{r= 1",
sP=_Jns¥ = _K". (3.26)

4. COMPLEX AND QUATERNIONIC SUBDUCTION
MATRICES

Next to be shown is how the complex and quaternionic
subduction matrices,

Sé(s)ch(g)’ 56(3)=QA(31, (4'1)

can be obtained from the real matrices R ##. This step in-
volves only substitutions or linear transformations given by
simple complex or quarternionic matrices. That no more ef-
fort is needed may be traced back to the fact that all irreduci-
ble representations of a compact group can be obtained from
the real ones by successively extending R to C and Q) (see Ref.
6, Sec. 3). In the first step each irreducible representation of
C or Q type decomposes into two complex irreducible repre-
sentations of half the dimension which are inequivalent
(complex conjugate) for A = B but equivalent {identical) for
A =T If Cis extended to Q the representations C®+ and
C®~ become equivalent whereas C” splits into two copies
of the quaternionic representation Q ”".

Extending the reals has two aspects since both A and A
may become reducible. The second effect is obviously harm-
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less: if a representation D * becomes reducible it only has to
be transformed into a direct sum of its irreducible constitu-
ents. But this is a standard procedure because all that needs
to be done in this case is to diagonalize elements of the group
algebra which behave like the units of the extension field;
which elements are appropriate is clearly indicated by the
type of A. At first sight the reducibility of D * seems to pose
more serious problems but in this case the subduction matrix
may always be put into such a form that the same transfor-
mation decomposes both D and S *'#. This is not surpris-
ing for the following reasons: Every representation of G may
be restricted to a representation of g which in turn may be
transformed into a direct sum of irreducible representations
by a matrix of the same dimension. If the representation field
of A is fixed and only representations of g irreducible over
this field are considered the elements of the subduction ma-
trix may be chosen from the same field. Therefore starting
from the absolutely irreducible representations R A CBH,
Q" one ends up with direct sums of representations of g
irreducible over R, C, and Q, respectively, if the correspond-
ing subduction matrices are real, complex, and quaternionic.
If the representation field is an extension of the field from
which the elements of the matrices D {=R*or C®+ or
Q7),S*® and I & m**D* are taken, then the reducible
ones of the matrices D * must be transformed into irreducible
representations as described above. If, on the other hand, the
representation field is a proper subfield of the field over
which A is absolutely irreducible, the matrices D ( = R " or
CB*orQ”),S"%, and @ m**D* can be “blown up” by
one of the substitutions {I.2.1-2.3) resulting in larger matri-
ces of a peculiar structure. Up to minor changes, discussed
below, this approach has already been taken into account in
the construction of the real subduction matrice R *¢#.

The details of the construction of the nonreal subduc-
tion matrices are best understood treating the three types of
A separately. For A = A the real representation is absolutely
irreducible so that only the possible reducibility of the repre-
sentations A has to be taken into account. This is done by the
following definitions:

CAlg)=RA(g)CA’ QA(g>=CA(giQA, (4.2)
C/}l\jrm,/l'j't'm' = 6}»/1'51j'5mm'c;{1" (4‘3)
C*=1,
Ch— 1 ( 1 1)
‘/2 ..i l. i
1 1 1 -1
1 —1i i —1i — i
QL 4.4
c=— "1 1 21 _if (44)
— —1 I —
Q/Ijtm./l'j’{'m' - 5&/1‘51j‘5mm' ;{t" (45)
1 0
o =1, 07=(; %), er=0e0
0
1 1 i
Q=—‘/2 (j k). (4.6)

It is easily checked that C# transforms R “[a + ib ] into a
direct sum of @ + ib. Accordingly R # decomposes into C#*
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@ C#~, the two representations being interlocked since they
belong to ¢ = 0, 1. The transformation Q7 carries C#~ into
C#+ to make explicit that these two representations are
equivalent over Q. Similarly the matrix C? transforms
R ?[q] into a direct sum of two copies of C ?[¢] which are
further reduced tog @ g & ¢ @ g by Q7. Note that all this is in
agreement with Eqgs. (2.6).

Next consider A = B. Here the subduction matrix
R B9 had been chosen in such a way that the irreducible
representations R # appearing in the decomposition have the
form indicated in Eq. (3.6). In fact Egs. (3.22) ensure that the
elements e’a + i°b are always represented by matrices

RP(a+ifb)=Y @R [a+ib]. (4.7)

Likewise conventions (3.23) had been chosen to obtain repre-
sentations where

RV(eVa+i7b+j7c+k”d)=z ®Ra+ib+jc+kd].
(4.8)

This was necessary for real ¢ reps but is inconvenient for
complex ones because in general the matrix R 8# does not
commute with

RB(iB)=IB=z ®R [i]. {4.9)

Now we are looking for a real subduction matrix R ®® com-
muting with 78,

RB(87B _ [BR B (4.10)

because all matrices with this property are composed of sub-
matrices of the form R € and hence decomposed into two
complex conjugate matrices by the same transformation
which transforms 78 into = & [( + i) ® ( — #)]. Such a matrix
R B9 is obtained from R ®# by multiplication with a simple
orthogonal matrix R, viz.

RB® = RB@&R, (4.11)
R/{jtm,)"j’t‘m' = 6}./1'61'/"5mm’r;lm’ (4'12)
re, =1,

r8. =u', where u( = + 1)is determined for each m

from PBA 8 = pBm,

+1 for ¢#2
4 =

Tom —1 for =2l (4.13)
It fgl]ows from (4.11-4.13) and (3.21-3.23) that the columns
of R B'# can be combined into pairs v, I ®v; this implies (4.10).
Itisalso  evident from (4.11-4.1 3)and (3.6) that the represen-
tations R * appearing in (3.2) if R ®# is used instead of R &#

are no longer ¢ reps for A = B ( — 1), ¥ but have the following
form:

RB‘”’(e"a-}-iﬁb):z @R %[a+uib], (4.14)
RYe"a +i"h + jc + k'd)
c i c :
=3 Q(I’:C{a—tli]id] 20{23‘;})' (4.15)
11 J. Math. Phys,, Vol. 24, No. 1, January 1983

The matrices R &, R ®®, and = @ mg*R * all commute with
I8, which is equivalent to saying that they are composed of
submatrices of the form R €. The corresponding complex
representations and subduction matrices are therefore easily
obtained by replacing each submatrix R €[a + ib ] by the
complex number a + ib. That is, if the columns of R ®® are
relabeled according to

A=apf: t=0-5u=0,v=0
t=1-u=0v=1,

A=y t=0-u=0,v=0
t=1su=0,v=1 (4.16)
t=2—-u=1v=0
t=3-u=1v=1,

then
R 8um = RE[CRLE]- (4.17)

This is the subduction matrix for the representation C® * (g,
where CB+ is given by

R ?R.J'R'(x) =R%:: [C?JT (x)]

The subduction matrix for the representation C8 is

(4.18)

CB-®=[CB+E]*CE, (4.19)
ngum,,{j'u'm’ = 6&4'5ﬁ'5mm'cﬁu" (4'20)
ce=C?=1, C"=RCj). (4.21)

The only purpose of the matrix C & is to bring the representa-
tion ¥ into the form required for complex ¢ reps, i.e., to en-
sure that

Ce'a+ib+jc+kd)=) @C®a+ib+jc+kd].
(4.22)

Since C®* is an absolutely irreducible representation of G
the quaternionic subduction matrix is obtained from the
complex one by multiplying it with a quaternionic matrix,
which transforms C#~ into C# * and decomposes C".

Q¥ =CB+5Qh, (4.23)

Q/?jum,/l'j'u'm' = 6,{,{‘61]"57717'1' :;u" (424)

Q=0 =1, 0% =j, Q"=0, Q see(4.6).
(4.25)

The simplest case is A = I'. We recall the peculiar
structure of R 7, which indicates that this representation is
essentially a quaternionic one;

Ripsr(X)=R3 [QF;(X)]. (4.26)

That the matrices R " (X') are composed of four-dimensional
submatrices of the form R ? is equivalent to the commuta-
tion relation

RTX)RT(g=RT(gRT(X), XeG, ¢eQ, (4.27)

R7(g)=Y oR%q]l=0", Q" see(3.10) (4.28)

[cf. Ref. 7, Eq. (2.15)]. Because of (3.24-3.26) R "(® is also
composed of four-dimensional submatrices of the form R ©
so that

RT¥RT(@=R"(@R"'?, ¢eQ, (4.29)

P. Kasperkovitz 11



that is to say R 7' is also essentially quaternionic.

Ri%m =R% 10715 ] (4.30)
Since both the matrices R ”'(x), xeg, and the subduction ma-
trix R 7'# are transformed into quaternionic matrices of
quarter dimension by the substitution R ¢[gq]—¢ so is the

direct sum = & m5*R *(x), showing the same structureas R
and R "(# because of (3.2) and (4.27, 4.29). Now

Semg®Rex) =Y emy*[ @ 4R *(x)],

[$4R a(x)]j(,j'r’ =R0u‘[R7OJ’0(x)]’ (431)

SeomPRP(x) = emyP[ 2R “(x)],
[@2R?(x)];,, =R [R5 ;olx) +iR% o(x)],

jljo
(4.32)
so that

Semy'Qtix)=Y em{R(x) ® S emPC?* (x)

oS &mhrQx). (4.33)

Once the quaternionic matrices are known the correspond-
ing complex matrices are obtained by substituting
g—C?|q] [see Eq. (1.2.3)):

ClryrX)=C% [Q5 (X)), (4.34)
Citlim =CRIQ55n ] (4.35)

Equations (4.33—4.35)imply that the representations appear-
ing in £ ® m{*C *(x) are all complex ¢ reps. Note that the
representations 8 + and 8 — are interlocked since they be-
longtor=0, 1.

5. REDUCTION OF REAL PARAMETERS

If oneis only interested in complex subduction matrices
it may seem a bit fancy to construct them via the real ones.
However, the advantage of the approach considered here

M|
Al Ac AB+ Ay B+a B+B+ Bty
Tt/Nn 172 /4 1/4  1/1 1/2 1/2

It furthermore should be noted that the conventions which
are always necessary to fix a subduction matrix completely
reduce here to a choice and/or calculation of real numbers.
That the matrices and vectors used in this method are always
real might be of interest for numerical calculations. More-
over if the ambiguity inherent to this kind of problem is re-
moved in the manner proposed here three related problems
are solved in one run. Finally it is pointed out that the rea-
sons to use ¢ reps are even more stringent if one is interested
in the noncomplex representations. Here no true alternative
seems to exist. In principle one could construct successively
irreducible subspaces (of column vectors) starting from cy-
clic representations, i.e., from the linear hulls of sets

{ D (x)v|xeg}. In this approach the Schmidt process is the
only mean to construct bases since at this stage no shift oper-
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I'a IB+ Iy
172 172 1/1 5/9

does not result from these details (which certainly may be
substituted by equivalent ones) but from its spirit: If a matrix
representation is chosen in type-adapted form the number of
real parameters fixing the matrices is, on the average, only }
the amount needed to fix a nonadapted representation. Like-
wise comparing the subduction from a type-adapted repre-
sentation to type-adapted representations with the subduc-
tion from a nonadapted representation to nonadapted
representations of the subgroup one finds again a reduction
of real parameters, this time to as low as 3, averaged over all
types of subductions. To see how this comes about consider,
for instance, the subduction AfZ + . For non-adapted repre-
sentations C* is not real nor are C? * and C?~ complex
conjugate representations. If the projection method [based
on the complex group algebra A (g)] is used to determine
the rows of C */# belonging to B + one has to find mp? +
+ mf?~ ( = 2u”?) orthonormalized vectors each having m”
( = dim C*) complex components. In the method proposed
here only u*? [ = mg?/2, cf. (3.16, 3.19)] orthonormalized
vectors with m* real components have to be determined. In
this case the ratio 7t /Nn is equal to 1, if the numbers Tt and
Nn are defined as follows:

number of real parameters needed to fix
the columns of C*® belonging to A

= Tt, if both A and A are ¢ reps,

= Nn, if neither A nor A are ¢ reps. G-h

For AA = A 4+ areduction by } may be attributed to the
fact that C* has been chosen to be real and C#* to be com-
plex conjugate. A further reduction by 4 is due to the fact that
the real and imaginary parts of the matrix elements of C (¢
belonging to 8 + (or B — ) are related by the matrix 7 *#
which is uniquely determined by A and S up to the sign.

Collecting these results for all pairs A4 we arrive at the
following table:

average
& (5.2)

ators are known. But if one tries to pass from a nonadapted
representation to linear combinations of these matrices suit-
ed to characterize invariant subspaces and to construct orth-
onormalized bases problems arise both for the real and the

quaternionic representations.

For the real representations this is due to two facts: (i)
Contrary to the complex case there exist no simple rules how
to obtain projection and shift matrices if the matrix represen-
tation of the group is nonadapted. {ii) If A # o, matrices com-
muting with the matrices representing group elements must
exist but their form is not obvious for nonadapted represen-
tations. Thus if a representation A (#a) were given in nona-
dapted form one would have to find first the algebra of com-
muting matrices (which is isomorphic to C for A = 8 and to
Q for A = ¥), and then to transform it into a peculiar form by

P. Kasperkovitz 12



an orthogonal transformation. For A = S this would mean to
find a matrix transforming the matrix 7%, = R2__ (i?)into
the form (4.9); for A = y it were matrices R % (¢), ¢ = i, ,
that would have to be brought into the form (4.28). These
orthogonal transformations transform the nonadapted re-
presentations into ¢ reps which in turn allow to define projec-
tion and shift matrices. But even then a systematic explana-
tion of the multiplicities in case A4 = Ba, I'a, I'B is still
missing until the algebra of matrices commuting with

R *(X), XeG, has been determined.

For quaternionic representations the situation is quite
similar. A short reflection shows that the only linear combi-
nations of group elements which certainly leave a subspace
invaraint, if it is invariant under the action of the group,
must have real coefficients. Hence it is only the real group
algebra which can be used to find the desired subspaces (cf.
Ref. 6, Sec. 3). This algebra is not obvious for nonadapted

13 J. Math. Phys., Vol. 24, No. 1, January 1983

representations A #y. Torecognize their type and the corre-
sponding ¢ basis these quaternionic representations have to
be transformed into real (1 = a) or complex form (1 = ).
Fortunately one need not worry about how to find the hyper-
unitary matrices needed for these transformations since qua-
ternionic representations are hardly given from the outset.
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A new mathematical function connected with boundary value problems in

kinetic transport theory
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A new mathematical function connected with solving the Maxwell transport equation by
applying the bimodal two-stream relaxing distribution is defined. This new function gives a more
correct description of the direct nonequilibrium effect in gas molecular distribution on the
macroscopic transferring of moment flux. In this paper, the differential equation satisfied by this
function, its recurrence relations, and series or asymptotic expansions in various conditions are
formulated. The degrees of approximations for these expansions are discussed.

PACS numbers: 02.30. 4+ g, 51.10. + y

I. INTRODUCTION AND GENERAL CONSIDERATION

The distribution function of monoatomic molecules for
dilute gases can be described by the Boltzmann integro-dif-
ferential equation in the region of densities from the free-
molecule realm to the continuous medium (bicollisions
among molecules still play a dominant role), i.e.,

Ligvr=|[[[urri-musdvdeas,

where fis the distribution function of molecules,

v = |g, — &| the relative velocity between two colliding mol-
ecules, b the parameter of collisions, and € the collisional
azimuthal angle.

The right-hand side of Eq. (1) is called a collisional
term. Because of its nonlinearity, to solve Eq. (1) under cer-
tain boundary conditions is very difficult. Fortunately, in
many real problems of physics one is interested not in distri-
bution function itself, but in its some lower moments, e.g.,
gas density, temperature, flow velocity, shear stress, and
heat flux. In order to obtain correct values of these macro-
scopic quantities, the moment method, model equation, and
variational method are widely used. The moment method is
a powerful instrument, especially for the nonlinear prob-
lems. Multiplying both sides of the Boltzmann equation (1)
by the velocity function ¢ (§) and integrating it for all possible
velocities of molecules, one gets the following Maxwell
transport equation or moment equation:

a —
Ef‘” € dE + v,~fg¢ (€)f dt = A, @)

where

A¢=HH(¢'—¢)mubdbdedg,dg.

The differences between Egs. (1) and (2) consist in that
for the latter there is a possibility of not necessarily having to
find the precise value of the distribution function point-by-
point, but to put stress on computing the moments of the
distribution function in some average sense. It is possible to
construct a suitable form for the distribution function in ad-
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vance in order to approximately solve Eq. (2) in the sense of
correct macroscopic parameters of gases. However, this
functional form must be determined in such a way that it can
represent the physical nature of the problem, reflect the ef-
fect of soid boundaries, and make the mathematical treat-
ment easy to carry out. Based on this idea, a bimodal two-
stream relaxing distribution suggested by the author in Ref.
1 can be introduced here according to the following
considerations:

(i) The distribution function should be discontinuous
along the normal direction with respect to the surface of
solid walls. This is particularly important for rarefied gases
and (or) in strong nonlinear problems or near the solid
boundaries within the region about the mean free path of
molecules.

(ii) In the nonlinear cases, there must be a bimodal char-
acter emerging in the distribution function of the molecules.
For example, this character needs to be accounted for in the
problems like shock wave structure, heat transfer with large
temperature gradiant, etc.

(iii) The influence of solid boundaries on the distribu-
tion function of gas molecules should be divided into two
parts: The first is direct influence, i.e., reflected molecules
from solid walls directly reach certain place in the gas field
and constitute some part of local molecular ensemble. Mole-
cules of this part may be described by the relaxing term for
the distribution function of reflected molecules from corre-
sponding solid surfaces, which is to be decayed exponential-
ly along their trajectories due to molecular collisions. The
second is indirect influence, i.e., contributions to the distri-
bution function of molecules in that same place from colli-
sions between the reflected molecules and the other gas mol-
ecules and from many-times collisions among the molecules
which had been collided (directly or indirectly) with reflect-
ed molecules in their histories.

The above division is very important, because the na-
ture of the velocity distribution between these two sets of
molecules is quite different, in particular for the nonlinear
cases.

Therefore, the total distribution function of gas mole-
cules can be described by the following formula, which is
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called the bimodal two-stream relaxing distribution:

F(&x) = ay(r)fi(§r) + ay(r)fs(Er)
Kir—r, |

&l
S1Ex) = ay(rlfi(E.x) + ay(rlfo(Eor)

+ exp[ - w(6r,,) for &n,, >0

(3)

K2 —w
+ exp[ - ilglr—' ]fw,(g,r%), for En,, >0

where r is a radius vector in a gas field, L the original
radius vectors of gas molecules on the surfaces of walls, n,, ,
n, the normals of two oppositely faced solid surfaces
towards the gas, § the velocity of a gas molecule, f,, (E,r,, )
and f,, (€,r,, ) the distribution functions of reflected mole-
cules from the solid boundaries, a,(r), a,(r), as(r), and a,(r) the
space influence functions {indirect) of solid boundaries, and
S1E,x), f-(E,r) may be selected as local Maxwellian distribu-
tion which contains several other space functions deter-

mined by moment equations.

By applying this distribution, formula (3), to the heat-
conduction problem between two parallel plates, much bet-
ter results than existing theory have been obtained in Ref. 1,
including the total heat transfer and the temperature vari-
ation along the axis perpendicular to the walls.

In order for the problem to be solved, the number of
moment equations is required to be equal to the number of
unknown space influence functions.

For summational invariants of collisions, namely, the
mass m, moment m§, and energy m|§|/2 of a molecule, the
Aé,=0 (s = 1,2,3,4,5), which is independent of what the
form of the distribution function is. Thus, for the steady
problems there are five moment equations which may be
selected:

v [serag=o s=12343 @

However, besides that, at least one moment equation
should be constructed, in which the velocity function ¢, ()
differs from above five collisional invariants ¢_(E).

For the ¢, (§) selected, the Ag;(E) is evaluated easily for
the Maxwell molecules by (2), which possesses the following
general form:

4¢,(8) = Ek‘,Cikn/aik, (5)

where C,, are constants depending on the dynamics of colli-
sions between molecules, 1/a,, the moment flux in gases,
which are constants in steady problems, n = jfd § the num-
ber density of molecules per unit volume.

Thus, the additional moment equations have the fol-
lowing form:

V.86V ds = SCun/a. 6

Introducing (3) into (6) and (4), one gets a system of
nonhomogeneous ordinal differential equations of first order
together with five algebraic equations for the space-influence
functions.
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Integrating these simultaneous differential equations,
we obtain a new mathematical function indicating the direct
effect of solid boundaries, where reflected molecules have
Maxwellian distribution, on transferring the moment flux in
gases. This new function is defined as

o n+1

L,(x,a) =f e ¥ " du,
o u+a

where x and a are two non-negative real numbers.

It is clear from the above discussion that the parameter
1/a characterizes the flux of macroscopic physical quantities
of gases which in turn represents the degree of nonlinearity
of the physical problem. When 1/a approaches zero, the net
effect of solid boundaries on the distribution of gas molecules
tends to zero, i.e., L, (x, o }—0, because the system between
solid boundaries and gases is in the complete thermal and
{or) dynamic equilibrium states. But when 1/a is raised up
approximately to infinity, the direct effect of solid bound-
aries on the distribution function of gas molecules becomes
extremely strong and the physical flux gets very large. The
increase of 1/a from zero to a large value shows that the
physical problem changes from the linear one into the non-
linear one.

Similarily, in the transport problems of other neutral
particles function (7) may also appear.

(n=0,1,2,3,-) (7

2. GENERAL PROPERTIES

The function L, (x,a) satisfies the following differential
equation and recurrence relations:

n asLn
ax peaie [x + (n — 1)a] pwe
+(n—1)62L'1 +ZaaL"—2L =0, (8)
x? Ox v
o, _ -L,_, (%)
dx nov

2L, =axL, ,+ [x+(n—la]L,_,
+{n—1L,_, —2aL (10)

Formula (9) is the simple result of the differentiating
definition of L, (x,a). Integrating both (n — 1)L, _, (x,a) and
(n — l)aL, _ 5 (x,a) by parts and introducing them into (10),
one is in a position to prove that (10} is an identity. Equation
(8) is the direct result of (9) and (10).

When a = 01in (7),

n—1-

o

L,(x0) =f ue — = */dy=], (x). (1)
0

It can be seen from this that the case discussed by
Abramowitz et al.** (i.e., J, (x)) is a special case of L, (x,a).

The main differences in physical meaning between J,, (x)
and L, (x,a) may be explained as follows:

The function J, (x) represents the direct contribution of
reflected molecules from soid boundaries to the local mass,
momentum, and energy of gases, i.e., collisional invariants,
carried by the reflected molecules themselves. J, (x) appears
in the equations of conservation (4), which are independent
of whether the moment-flux exists or not. However, L, (x,a)
energes after integrating Eq. (6), which denotes the existence
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of moment-flux in gases. Therefore, L, (x,a)is really connect-
ed with kinetic transport problems, which answer the ques-
tion what part of the direct contributions of reflected mole-
cules from solid boundaries to the transferring the moment-
flux in the local gas field is. As the moment-flux becomes
extremely large, L, (x,a) is in the same mathematical form as
J,(x), but their physical meaning is quite different as shown
by the above discussion.

3. EXPANSIONS FOR VARIOUS g AND x
A. The case of large 2 and small x

First of all, it can be pointed out that for all the values of
a one finds following identity, proved by induction:

u’l+l

1 n
=(—a)"*' — + —a)" ", 12
o (—a) p s;o( ) (12)
Then, we have
o n+1
L,(0,a)= j “ e “du
o UuU+a

n+1 < 1 —u? = _ a\n—s
=(—a) J; T e " du+ sgo( a)* ~5J (0).
(13)

Obviously, in the induction of (13), interchanging the
order between integration and summation is permisible.

The asymptotic expansion of the first term on the right-
hand side in (13) can be obtained by expanding the denomi-
nator of the integrand in descending powers of a*:

[Aoera-tsiolr(zh)

u+a =0 a
Thus

Ln(oﬂ):(—a)"“%io(_ 1y F( r+1 )

= ar+l 2
1 & _ s+ 1
rygrr()
ZSZ‘O( ) 2

- peil & (=1 Afr4]
=(—a) —2—’=;+1 i I"( 5 ) (15)
Let us now turn to discussing the expansion of L, (x,a).
This can be obtained by use of the Laplace transform. The
Laplace transform of L, (x,a)is definedas ¥ {L, | = {e ™
XL, (x,a)dx, i.e.,
oo n +1
f f u+a
Since (7) is absolutely convergent, the order of integra-
tion above may be changed Consequently,

e~ ~**dudx. (16)

'l +2 5
=_J e du, (17)
u+au+1/t
Formula (17) can be further rewritten by using (12) for u” * 2/

(u+1/t):
R 1 il 1 ' —u?
LIL,}=(-1) tn+3j(; (u+a)(u+1/t)e

= 31— Li0a). (18)

s= — 1

When a >0, L _,(0,a) in (18) is convergent. The first term in
the right-hand side in (18) may be changed:
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(=1 13 L e " du

t"*3Jo (u+a)u+1/t)

1 1
=(—=1y*+1— ———-—L_ 0,

(—=1) a0 1a) 1{0.a)

+(—1)" l J- L -wau.
a t" Y t—1/a)do u+ 1/t

(16

The series expansion of the integral on the right-hand
side in (19} is*

J L e “du
o u+ 1/t

& (— 1+
"2,

Pt
T

)+ 1Int}

172 < ( _ Z)r (2c
r=o 1.3.5..2r 4 127 +!
where Y(r + 1)= —y + 2/ _,(1/m), (1) = — 7, and
¥ = 0.577 215-- is Euler’s constant.
Substituting (19) and (20) into (18), we have

_1._—1__[‘_1(0,0)
a tn+2( 1/ )

e (=1 {4r+ 1) +1nz)}

+

LIL ) =(—1""

+723 (=2
r=0 1~3-5-..(2r+ 1)t2(7+1)+n+](t_ l/a)

S nes 1
S:z“l(— 1} +1 ey L (0,a). (21)

Using the theorem of convolution

] c W
sl L f(t)] - (f ds) Fx), (22
L ¢ 0
and
f_l 1 ] — ex/a’ (23
L t—1/a
we deduce
. 1 N
LY — ] = a”(e"/" — —(x/a)") (24
tV(t—1/a) pZoP
In the same way, using (22) and
Lt In ¢ ] =e"*(In(1/a) + E,(x/a)), {25
l t— 1/a
we obtain

—1 In¢ = a|e9In(1/. E
[—ZN(t—l/a)] a [e (In(1/a) + E\(x/a))
=S Ss/af s+ 1) —Inx) |,
=T (2¢

where E\|(x/a) = {%,(e ~*/v) dv is the exponential integral
Its series expansion takes the form®:

Ex/a)= —y—Inx/a)— 3 (-;nl'—’"(x/a)". @

n=1

In the deduction of (26} attention has been paid to the
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following integral®:

x/a
J ¢’E\(s)ds = ¢”°E,(x/a) + ¥ + In x/a. (28)

(V]

Formula (26) may be further rewritten to simplify the
procedure for getting the expansion of L, (x,a). Using the
serious expansion of E,(x/a) and the definition of the func-
tion (s}, we deduce that

e¢’*(In (1/a) + E,(x/a)) = i %'—(x/a)‘(w(s—i— 1) —Inx).
s=0 9
(29)

Thus, (26) may be further rewritten as

Int
] Ime ] »
[tN(f-—l/a)] Z (X/d)(gb(s—}—l) nx).
(30)

Substituting (24), and (30) into (21), we obtain following
expansion for L, (x,a) in the case of large a and small x:

L,(x,a)= 2 —_—(—x)"_’L (0,a) + (—a)"* 'L _,(0:0)

s= —1{n

x 3 —(x/a)s +(—

s=n+2

1y g‘% 2, .., (31)

where

x2r+n+s

0 -
nes) ARr +n +s)!

(=2

$ (—)Uglr+ ) +42r+n+s+1) —Inxj

+7T1/22

7o 1:3:52r + N[(2r +n +5s+ 1]

2r+n+s+l. (32)

We shall discuss the order of approximation of the expansion (31) in detail as follows:
Because the series (32) in an alternating convergent one, if we sum its terms through «, the remainder satisfies

o+ 1) x+1£'/’ K+2)+ Y2k +n+s4+3)—Inx 4 n,cy2
Rt V<|(—=1) x
e c+ 12 +n4+s+2)
_+_77_1/2 ("2)K+1 x2x+n+s+3 . (33)
1.3-5-(2c + 3)[(2¢ + n + 5 + 3)1]
Therefore, (31) may be expressed as
L,(x,a)= Z ( )(—x)HL J(0,0) + (= a)"*‘L_,(O,a) i ix/a)s
s= — 1\ — S
A (=) i & (x/ap +n+s e 1 *k+1)
+(—1 ——a 2r+n+s+ 1) —m—— 1 —R
( )rgo r! sg;p( )(2 + + )' ( )sga "

+(__ l)n zi:o_!__riab-l—n+l{%¢(r

2r4+n+2

1n1/2
) 2135(27‘-*-1)

Since the last two terms in the right-hand side of (34)
can be calculated precisely, only the first four infinite series
in (34), namely L (0,a) in the first term, L _,(0,a) in the sec-
ond term, and the third and fourth terms, remain to be dis-
cussed in estimating the error of approximation.

First, we shall determinate the error of approximation
of the first and second terms in (34), which is caused by
L (0,a) having the asymptotic expansion

1 & (=1 r+1
L(0a)=(—a)f*'— F( ) 35
Oa)=(—ayt's 3 o7 : (35)
Observing that the series in (35) is an alternating one

and summing its terms through r = « (which must be larger
than s + 1), we find that the remainder of series (35) satisfies

O ,(_x_).
4 a1\ 2
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Riga <|(— (36)

+l)—lnx} 3 A

= 2r+n+s)

0 (x/a)27+n+s+l

SHr+n4s+ 1)

(x/a)2r+n+s

(34)

Therefore, when we take r = x in L (0,q) and L _,(0,a),
the remainder in the first and second terms is to be estimated
as

R1x+l)(xa)
si (- 1y r(x/z)( i (x/")""’ax_lm
+(_1)n+x: I'(k/2) — n+15 2”%():/0)5
= ‘( - 1)"“%1‘(:(/2) ak_l — e (37)

Second, we discuss the third term in (34), which may be
rewritten as
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(x/a)2r+n+s
(2r +n+s)!
/P e
1) 4+ RY* Nx,a), 38
)(2r+n+s)!+ 37 xa) (38)

(_l)ni%a2r+n+li¢(2r+n+s+ 1)
r=0 .

s=2

K - r il
=(_1)"Z(Tl)azr+"+lz¢(27+n+s+
r=0 . s=2

where the remainder is
1 \(x/a)2r+n+1+l

n S (_1)’ 2r+n 1[(
L R e | I e o & S apps
( ),Z’o r v 13 2r+n+l+1/(2r+n+l+l)!
1 1 \(x/a)2r+n+l+2

+(— D R +
vHltats 2r+ntit1  2r+ntit2)r+ntit2)
1 l 1 \(x/a)2r+n+l+3

+(— Fl14i+i+ + +
4 13 2r+n+l+1 2r+n+1+2 2r+n+1+3/2r+n+1+3)

1 1 1 ] \(x/a)2’+"+’+4 ]‘
+(— Fltg+i+ o+ + + + o
4 i3 Yrrntl+1  Zan+i+2  tntl+3  2tntitd/rtntit )

R{*Yx,a) =

2r+n+1+41
1 (x/a)2r+n+1+2 ( 1 1 \ (x/a)2r+n+1+3

+ +
+n+l42 2r+n+1420 \2r+n+1+2 2r+n+1+43/2r+n+1+3)

1 1 1 (x/a)2r+n+l+4
+( + + ) ] . (39
2r+n+1+2 2r+n+1+43 2r4+n+14+4/2r+n+1+44)
Owing to the relations
1 (x/a)2r+n+1+2
r+n+14+2 2r+n+1+2)
. x/a (x/a)2r+n+l+1{ 1 1 \(x/a)2r+n+l+3
T n+I4+2 2r+n+I4+2\2r+n+1+2  2r4n+1+3/2r+n+1+3)
- ( x/a )2 (x/apr+r+i+d x/a (x/a@)r+n+i+2?
2r+n+1+2) Qr+n+1+2 2r+n+1+3 2r+n+1+3)0
( 1 + 1 + 1 ) (x/a)2r+n+l+4
2r+n+1+2  2r+n+4+14+3 2r+n+I1+4+4/2r+n+1+4)
<( x/a )3 (x/a)2r+n+l+l +( x/a )2 (x/a)2r+n+l+2 N x/a (x/a)2’+"+’+3
2r+n+I1+2/ 2r+n+1+2) 2r+n+1+3) Qr+n+1+43) 2r+n+1+4 2r+n+1+4)
e
ey (40)
we have

x 1y 2r4+n+1
R(31+l)(x,a)< ‘( _ 1)"2(—'1—)-—a2’+"+’[1/;(27+” + 1+ 2)(825/“— +2+ %(X/ay,>
r=0 r p=0 p

+ x/a +( x/a )2+( x/a )3_’_."' (e/apr+n+itt
[ 2r+n+1+2 2r+n+1+42 2r+n+1+42 1@2r4+n+142)
4 [ x/a +( x/a )2 ( x/a )3+...‘ (x/a)r+nti+?
L 2r+n+1+3 2r+n+1+43 2r+n+1+3 12r+n+1+3)
+ [ x/a ( x/a )2_+_( x/a )3_*__"' (x/a)¥ tn+i+3 +H
| 2r+n+l+4 \2r4n+l+4 y+n+it4d L 2r¥n+i+ay
« - r 2r4+n+1
— ’( _ l)nz ( 1) a2’+"+'[¢(2r+n +l+2)(ex/a_ '*'z+ i(x/a)l’)
r=0 r! p=0 p!
1 {x/a)2r+n+l+2 1 (x/a)2r+n+l+3
+2r+n+l+2—x/a r+n+1+20 2r+n+Il+3—x/a2r+n+1+3)
1 (x/a)2r+n+l+4
+ +H
2r+n+l+4—x/a2r+n+1+4)

an (_l)r 2r+n+1 b) 1+ 20 e ren+11 y
N e LT G-
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1 (e"/“—zr+§1+ll(x/a)l’)”

+
2r+n+4+1+2—x/a =0
< (_ l)ni(__l_ya2r+n+l ¢(2r+n+[+2)<e"/"_2r§+1i(x/d)p)
r=0 ! p!

1 (ex/,, TS —.(x/a)")] ’ o

+ r+n+1+2 o
" X (_1)’ YR Ja 2r+n+11
= |(—1) Z—T—a Yer+n+ 143~ Y F(x/a)" . (41)
r=0 . .

p=0

Finally, we are going to deal with the fourth term in (34), which may be estimated as follows:

(- SRy
s=24
1 . (x/a)2x+n+S+2
— _fynte+1_ 0 o 2k+n+3 2% s+3
‘( e T
+(___1)n+x+l 1 aZK+n+3(%¢(K+2)_1nx)(ex/a_lx+zn+3i(x/a)p)
(k + 1) F=o p!
B n 1 1)2 2K+l dednd /a_2 +n+4—1—
T s P
3500 p=0 .
< ‘(—— 1)"+K+l( 1 m az“+"+3¢’(2x+n+6)(e"/"—2 +5_+:1+3L(x/‘1)‘°)
K+ 1)t p=0 p
K+ n 3
+(— 1)"+K+1(K_+1_ o a2”+"+3(%¢(1(+2)-—lnx)(e"/"— Z"’ _(x/a)”)
2x+1 2x+n+41
+ ( . l)n+x+171/2T3_§_(_2K+_3)02x+n+4(ex/a_ Z —(x/a)")‘
0350 p=0
= it e g 2+ g+ 6 I — S pesap
- (k + 1) : /<o pl
2x-+—1 &k n+4]
+ _1n+x+l1rl/2 a2x+n+4(ex/“_ —x/a )’ (42)
( ) 1-3-5--~(2K+3) ,,Zo p( 4

In the deduction of (42) we have used (41), in which we have taken / = 3.
Summing (37), (41), and (42), we obtain the total error of approximation for the expansion of L, (x,a) under the condition
of large @ and small x, i.e.,

E(l{c"a-";;,(l+l]< (_ 1)n+K£KF(K/2) K_l le;c/a
a

_ n I (—1)’ rimal /a 2+n+1__1_
+(=1) z—r' a P2r+n+1+3)e 3 (x/a)"
r=20 . p=0
_fy e+l 1 26+ n+ 31 . /“—2K+"+3i
+(—1) w a ik + 2) + ¥(2« + n + 6) lnx) e S p|(x/a)P
! & P
2+ 1 Wn+4
+(— 1)"+x+ln'l/2 135._—(2K+ 3) alx+n+4(ex/a_ pzo F(x/a)p) (43)

where r = « and s = [ are taken in the expansion (31) for L, (x,a).

B. The case of large 4 and large x

In this case, the denominator in the integrand of (7) can be expanded in descending powers of a. Then, the asymptotic
expansion of L, (x,a) is
X — 1V = ) .+l poant 42 ,
L,,(x,a)= Z ( 1) f un+r+1e—u—x/udu+( 1) J u e—u-x/udu
oa ' Jo a*' Jo u+a

Z (=1 n+r+l(x)+ir_ll'n+x+l(x»a)

r+l aK+1

=3 W+ RE xa) (@4)

r=04a
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The remainder in (44) satisfies

. 1
Ry ”(x’a)<———a"“ St 1x)-

(45)

The asymptotic expansion of J, , ., , (x) has been studied by Abramowitz ez al.>* Thus, it is not necessary to discuss it

further here.

C. The case of small 2 and small x

First of all notice that for small a the following expres-
sion can be obtained by use of (12):

o[ g 2N

+7Tx/2i (=2
013527 + 1)

L,(0a) = [2¢(r +1)+1n i}

aZr+ l]

1 3 n—=s s + 1 = see
+§S;0( a) I‘( > ) (n=0,1,2,3,).
(46)

We now turn to discussing the expansion of L, {x,a) for
small ¢ and small x by use of the Laplace transform.
Formula (17) may be rewritten as

1 u"+1 2
L, =— e~ " du. (47)
tbho u+l/tu+a

Using (12) for u" * '/(u + a), we obtain

a)”“if ¢ e ¥du
tJo (u+ 1/t)u+a)
oo s+ 1

1 & ;f u
+— —a)" ™’ e
ts;o( ) o u+ 1/t

With the aid of (12) for #** '/(u + 1/t), we have

~“du. (48)

— n+li u —u’
F(L,} =(—a) tL-———(uH/t)(Ha)e du

1 1 ™~ 1 :
LD s e du
( ) sgo 52 u+ 1/t
< c n—r,n—s 1
+ Z Z(_l) a svr+1J’(O)‘
s=0r=0 t
(49)
Since the value of # in the integrand of
(—a)"“f L4 gy (50)
o t (u+1/t)u+a)

can be regarded as very large, (49) may be rewritten as

__a)n+lLJ‘ 1 e
tJo u+a

d 1~ 1 :
+(—1! a”“—f e “du
(=1 SZO %o u+ 1/t
n—r n—s 1

+ 2 Z ts~r+1

s=0r=0

:
~*du

J.(0).
(51)
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Using the transforms

N LI
| go+! K‘!’
Z 1:‘+’1] (1/1(K+1)——1nx), (52)
t
F! —f “2du]=.()h‘(x),
u+1/t
we obtain
L,(x,a)

—(—af*'L_0a)+ (- 1)+ S a0, ()

l - - n—rn—s 1 s—r r+1
X 3= Py r( : ),(53)

s=0r=0 (S -
where

_ s (=1 i] 2
L_,(0,a) r;o > [ > Hr+1)+1n , a
+ 2 < (—2)
<o 1.3:5+(2r + 1)
Because the first two terms on the right-hand sidein (53)
are alternating convergent series, if we sum all its terms
through r = «, the remainder of L, (x,a) in (53) satisfies

x+ 1)
Rl’f(xa)

ar+l (54)

n 1 ( )K+1 1 1 26+ 2
—a)t —Yk+2)+In—ia
( + 10 L2 a
)K+1
+ﬂ.l/2 aZK+3]
135 (26 +3)
1)n+1 z n—s[ ( — 1)K+]
+ 1!
2k + 5+ 3
X { (e + 2 2k+s+4)—-Inx} ———
{49l )+ ¥ ) J 15+ 3)
O+ 2k+s+ 4
+77.l/2 ( 2) B ]1 (55)
1.3-5+(2k + 3) 2« +s5s+4)!
D. The case of small 2 and large x
From {7) and (12) we have
©ynt! ;
L,,(x,a):j e ¥ ~du
o u+a
n * u —u —x/u < n—s
=(—a e du+ S (—a)" Jx).
( )J; u+a sgl )
(56)
Since a is small and x is large and the relation
e gL <1 (57)
u+a

holds for 0<u < oo, we obtain the following two approximate
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expressions for L, (x,a) by taking e ~“* and 1, respectively,
in place of u/{u + a) involved in the first term on right-hand
side of (56):

L,(x.a)=(—a)'Jolx +a) + 2": (—a)f" " Jlx),

s=1

(58)

L,fxa)= 3 (—ar (x| (59)

J. Math. Phys., Vol. 24, No. 1, January 1983

The errors of these two approximate expressions both satisfy

Ep (o <a"(Jolx) — Jo{x + a)). (60)
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Null field solutions of the wave equation and certain generalizations

C.B. Collins

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

(Received 10 November 1981; accepted for publication 11 August 1982)

The ordinary wave equation in 3 + 1 dimensions (¢ = 0,

= —3%/3t? + 3%/ Ix* + 3%/ + 3%/

admits null field solutions, characterized by V¢-V¢ =0,
VoV = — (36 /3t ) + (0 /9x)* + (3¢ /dy)* + (0 /3z)*

with V@=£0. It is shown that the general null field solution can be obtained from a knowledge of
the “time-transported” solutions, i.e., those solutions of the form ¢ = ¢t — ¢(x,,z), where ¢
satisfies both Laplace’s equation and the eikonal equation in a Euclidean space. We obtain all
second-order scalar wave equations of form f(¢,4..”, ¢.. ;¢ **/) = O (in arbitrary dimension and
involving a single potential function ¢ ) for which the above technique applies. These equations are
showntobeequivalent tothefamily of quasilinear third-order equations V¢-V(O¢é ) + K (04 )* = 0,
where K is a constant. Some null solutions of these equations are considered, and related to
previous works. The results are applied to determine all shear-free hypersurface-orthogonal null
geodesic congruences in Minkowski space-time, and some brief comments are made on complex

solutions and on more general wave equations.
PACS numbers: 02.20.Jr, 04.20.Jb
I. INTRODUCTION

Friedlander'? has considered simple progressing wave
solutions of the scalar wave equation in 3 + 1 dimensions.
For future reference and for the sake of brevity, we shall
discuss the more general situation in #-dimensional Min-
kowski space~time, in which there are coordinates (x/)
(if=0,1,2,....n — 1;n>2) such that the metric is

ds’ = — (dx° + (dx")? + (@x?)? + - + (dx" ')
= 1 dx'dx’, (1.1)
where 7, = diag( — 1, + 1, + 1,..., + 1), with 0<7, j<n, and

where the summation convention is employed on repeated
indices. The wave equation is then

82 n—1 82
=0, O= ——0>
D¢ (ax0)2 + agl (axa)Z

or
¢, =0 (1.2)

in tensorial form, a semicolon indicating a (covariant?) deri-
vative with respect to the metric (1.1). The simple progress-
ing wave solutions of (1.2) have the special form ¢ = Uf(S'),
where fis arbitrary and S is not identically constant; they
generalize the well-known d’Alembert solution, in which
U=1and S = x° + x' (and, for example, n = 4). Substitut-
ing¢$ = Uf(S)in(1.2) and recognizing that fis arbitrary leads
to the overdetermined system of partial differential equa-
tions

2 n—1 2 .

ox° =1 \dx°
(1.3a)
2VS'VU + UOS = 0528, U+ + US,* =0, (1.3b)
and
OU =0aU,# =0, (1.3c)

where the operators V and O are with respect to the metric
(1.1). In his original paper,' Friedlander considered the spe-
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cial case (with n = 4): U = V(x' x%,...x" " ') and
S =x° — 7{x",x%...,.x" ). Then the system (1.3) becomes

VrVr=1,

2VrVV 4+ VVir =0, (1.4)

ViV =0,
where the operators V and V? are with respect to the (n — 1)
dimensional Euclidean metric
ds*> = (dx')? + (dx*? + - + (dx" ~ ')? induced on the hyper-
surfaces {x° = const}. However, in his later book,’ Fried-
lander shows that, somewhat surprisingly, the general solu-
tion of the system (1.3) can (for n = 4) be reduced locally to
the special case (1.4), in the sense that knowledge of the gen-
eral solution of (1.4) is sufficient to determine implicitly the
general solution of (1.3). We now provide a description of
Friedlander’s procedure, which will be of use later on. How-
ever, this description will be in tensorial notation, thereby
rendering the procedure more transparent; it will automati-
cally involve the generalization from 4 to » dimensions.

The procedure involves a change of coordinates. By
(1.3a), we have 3S /9x°#0, for otherwise the equipotential
hypersurface {S = const} would not have a well-defined
normal (corresponding to the existence of a caustic). We can
therefore consider the coordinate transformation

X0 =85(x%x'x%....x" ) }

X*=x* (a=12,.,n—1)

[xo — T(XO,Xl,Xz,...,X" — 1)
xX*=X* (a=12,.,n—1)
the right side of {1.5) being determined by the inverse func-
tion theorem. We now examine the (symmetric) metric
ds’ =g, dX 'dX’in the new coordinate system. Here g;
=7, (Ox* /79X ) (9x' /19X /), land hence
s’ = — (rdX'V + Y (aX 2, (1.6)

a=1

(1.5)

where 7,=37/3X . Moreover, the inverse of g;; is
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g = p*(dX/dx*) (30X /3x') and hence

0 0 _ . 9 9 5o 9

X’ ax’ 7o 0X° IX* Z10X% X
(1.7)

The expression (1.7) follows either by direct inversion of g;;
from (1.6), or more simply from the facts that
g% =¥ dX° ax°
ax*k ax!
by (1.3a), and
dX° axe as
g0a — ki Y ol kil Y
T ax ax T ax
as as s
K ax* ax*  Ix®
yet from (1.5), 0 = 9x°/9x* = 7,35 /Ix* + 7, implying g°
= —7,/7, Since 1 = x%/9x° = 7,3S /3x°, (1.3a) is equi-
valent to

gii

=VSVS=0

87

n—1
3 2=l (1.8)
a=1
and since g; = 1, (0x*/dX ‘) (dx'/3X /), we have
axm 2
det g; = (det nk,)(det 5) = —73. (1.9)

We now reexpress Egs. (1.3) with respect to the new coordi-
nates X °. Equation {1.3a) becomes
g as as
X’ ax’
which is identically satisfied (by virtue of the fact that the

new coordinates have been adapted to this condition). For
any quantity U we have

= 0¢:>g00 = 0’

-1 9 (o et 3_U)
nv J—detgy BX"( Geten ax0
or, using (1.9),
0u=L"% (rol.
Toa=1
where a subscript / denotes partial differentiation with re-
spect to X '. It follows that Eq. (1.3c) is equivalent to

n—1

Z (TO Uaa

a=1
Substituting S for Uin (1.10) and noting that S, = 1 and
S, = 0 shows that Eq. (1.3b) is equivalent to

— Uyprpy — 27, U), (1.10)

— Uy gy — 27, U4} =0. (1.11)

n—1

z (2TaUa + UTaa)zo’ (112)
a=1
and, writing V' = Ur,, this becomes
n—1
Y 21,V + V7,,) =0, (1.13)

a=1
where use is made of the fact that £7_}7_7,, = 0, which
follows from (1.8). Differentiating (1.12) with respect to X °,
and eliminating 7,, between the resulting expression and
Eq. (1.11), results in

n—1

z (TOUaa + 2T0a Ua + UTOaa) = 0’

a=1
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which, with ¥ = Ur,, shows that Eq. (1.3c} is equivalent to

n—1

z Vaa

=0. (1.14)

a==1
In summary, we have two functions ¥ and 7 which satisfy the
equations

n—1

T 2=l (1.8)
a=1
n—1
S 27,V + V1ua) =0, (1.13)
a=1
and
n—1
V. =0, (1.14)
a=1

where a subscript a denotes partial differentiation with re-
spect to X ¢ (@ = 1,2,...,n — 1). These equations are of pre-
cisely the same form as those of the special subsystem (1.4),
except that now the operators V and V? refer to an associated
(n — 1)-dimensional Euclidean metric

(dX")? + (dX?? + - + (dX "~ ') Therefore, once the spe-
cial subsystem (1.4) is solved, we have the solution in the
general case. However, in making the appropriate transcrip-
tion, it must be remembered that 7 is a function of X ¢, as well
asof X“ (a = 1,2,...,n — 1), and that V' = Ur,,

This technique involving a change of coordinates is
powerful, and it is natural to explore the extent to which we
can apply it in order to obtain the most general solution of a
system of equations from a very special solution. The above
example, viz., system (1.3), involves three partial differential
equations for two unknowns U and S. For simplicity, we will
now consider instead systems involving two partial differen-
tial equations for one unknown ¢. In Sec.Il, we start by in-
vestigating “null field” solutions of the ordinary wave equa-
tion in 3 + 1 dimensions. These are solutions ¢ of the wave
equation (¢ = 0, which also satisfy the equation
Vé-Vé = 0; they are of physical importance since they are
linked to pure radiation fields and provide, in accordance
with special relativity, the limiting case at which distur-
bances can propagate. In order to generalize the investiga-
tion, we then consider in Sec. III null field solutions of cer-
tain generalized wave equations in #-dimensional
Minkowski space-time. Specifically, we prove the following

Theorem 1: Suppose that in n-dimensional Minkowski
space-time (n>2), in which there are coordinates (x')

(i =0,1,2,...,n — 1) such that the metric is

ds2 = (dx0)2 + (dxl)z + (dx2)2 + e + (dxn— 1)2,

(1.15)
the partial differential equation
f8:8,"8,6")=0 (1.16a)
admits null field solutions ¢ satisfying
V¢Vp = 4" =0, V0. {1.16b)

Further, suppose that the restriction (1.16a) is nontrivial and
that the system (1.16) admits a time-transported null field
solution of the form ¢ = x° — r(x',x?,....x" ~ ') in some coor-
dinate system (x') in which the metric is of form (1.15). If the
system resulting from the coordinate transformation
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X°=¢{x’x'x%...x" ) ]
X =x" (a=12,.,n—1)
[xO —_ T(XO,XI,XZ,...,X"_ l)
xX*=X* ([a=12,.,n—1)
in Euclidean (n — 1)-dimensional space with metric
(dX ')’ + (dX ?)? + - + (dX "~ ")isexplicitly independent of
X°, and is of precisely the same form as the system obtained
from (1.16) with the substitution ¢ = x° — 7(x',x?,...,.x" "),
in the Euclidean (n — 1)-dimensional space with metric
(dx'? + (dx*)? + - + (dx"~')%, then the partial differential
equation (1.16a) is equivalent to the third-order quasilinear
equation

D({0¢)+K(Og)* =0,

where K is a constant, and D =, ¢ * denoted differentiation
along the normals to the null hypersurfaces {¢ = const}. In
this case, the general solution of the system (1.16) is obtaina-
ble from the most general time-transported solution.

In Sec. IV we apply our results to the construction of all
shear-free hypersurface-orthogonal null geodesic congru-
ences in Minkowski space-time. Various remarks are made
in Sec. V, relating the results of the present work to those of
previous articles, and concerning generalizations to the com-
plexified case and to the case where the function fin (1.16a)
depends not only on ¢, ¢, and ¢, ¢ **/, but also on some
covariantly constant vector field A °.

Throughout, some familiarity with the geometric tech-
nique due to Friedlander'? and extended by Collins** would
be helpful. In this technique, a Gaussian coordinate system
adapted to the equipotential surfaces is introduced, and cur-
vature line parameters, related to the extrinsic curvature of
the equipotential surfaces, are employed. Thus the entire de-
scription of the associated differential equation is in terms of
coordinates which are geometrically significant.

Il. NULL FIELD SOLUTIONS OF THE ORDINARY WAVE
EQUATION

We first consider the concepts of a null field solution
and of a time-transported solution. Suppose that we are deal-
ing with the ordinary wave equation in 3 + 1 dimensional
Minkowski space-time, i.e., n = 4 in Sec. I. A scalar func-
tion ¢ on a region of space-time which is not identically
constant (V¢=£0) locally defines a system of hypersurfaces
{¢ = const}, the normal at any point to which is {parallel to)
V¢é. Because of the indefinite metric, this normal vector, at
any point, satisfies one of the conditions V¢-V¢ > 0,

V¢V <0, or V¢§-V¢ = 0. If there is an open set in which
V$-Vé =0and V¢ #£0, wecall ¢ anullfield (cf. Friedlander,”
who has a different sign convention for the metric). In this
case the null hypersurfaces {¢ = const] are generated by a
(unique) null geodesic congruence? {cf. Lemma 2.1 of Ref. 6).
At any point, the normal to such a hypersurface is both orth-
ogonal and tangent to the hypersurface, and tangential to a
null geodesic in the generating congruence.

Given any Killing vector,’ €, a null geodesic con-
gruence with tangent vector k is invariant under the action of
€ if and only if the Lie derivative
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£k=0[Ek] =00k, £/ — &, k/=0 (21
(cf. Ref. 6). We will say that a null-geodesic congruence is
time-transported if it is invariant under the action of a time
like translational Killing vector. Such congruences were
considered previously by Cox® and Collins,® by whom the:
were called “time-invariant.” However, this latter nomen-
clature suggests time independence, and so here we prefer
the terminology of time transportation. Following Ref. 6, 7
¢ is a null field, ¢, satisfies ¢,,¢* = 0, from which
¢..;6" =0, and hence ¢. ;¢ “ = 0, i.e., the congruence tan
gent to ¢, is a hypersurface-orthogonal affinely parame-
trized null geodesic congruence. If the congruence is time:
transported, we say that the null field & is time-transportec
We can choose coordinates (x') in (1.1) such that § = 3/0x
and, by (2.1), ¢, ;& / = 0, which implies that there is a con
stant b and a real function 7{x',x%x*) such that

¢ = bx® — 7(x' x*,x3), (2.)
and, since ¢ is null,
VrVr=5b7% {2.)

where the operator V refers to the metric induced on any
hypersurface orthogonal to §, ds* = (dx')? + (dx?)* + (dx’).
Asin Sec. I, we may assume that b = d¢@ /dx"+#0 (in order b
obtain a well-defined normal to the hypersurface

{¢ = const}), in which case

é=20¢/b=x"—Fx'x"x7),
where 7 = 7/b. Thus, instead of ¢ we can considera satisfv
ing

&;ia * = Or

¢ =x°— 7x' x*x°), (2.)
i.e., without loss of generality, b = 1 in (2.2) and (2.3). In tk
following, we assume that (2.4) holds, and drop the barrec
notation. Note that time-transported solutions, satisfying
(2.4), are not time-independent.

If ¢ is an arbitrary null field solution of the ordinary
wave equation, then

¢;i ¢ T =0,

¢;i;i =0. (2‘)
If we were to consider special simple progressive solutions
the ordinary wave equation (1.2)of form¢ = f(S'), with farb-
trary and S not identically constant, i.e., if in Sec. I we hae
U =1, then equations (1.3) become

VSVS =0,

os =0, {24)
which is equivalent to (2.5). The general solution of {2.6) i
therefore obtainable first by considering the special time-
transported solutions of form S = ¢ — 7{x,y,2), where
(t,x,p,z2)=(x’x"x*x), s0

VrVr=1,

Vir=0, (2
where the operators V and V? refer to the three-dimensionl

Euclidean space with metric dx* + dy* + dz°, and then by
performing the coordinate transformation technique de-
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scribed in Sec. I. Now the general solution of (2.7) is*
r=Ix+my+nz+ A4,

where /, m, n and A are constants satisfying
1? + m® 4+ n? = 1. Therefore, the general solution of (2.6) is
given by solving [cf. (1.5), (1.8), (1.10), and (1.11) with U=1]
t=1{Sx+m(Sly+n(S)z+A4(S)
forS,where /(S),m(S),n{S),and 4 (S) are functions satisfy-
ing /? + m?* + n* = 1. Each hypersurface {S = const} is a
plane, but the orientation of the planes {S = const} is the
same only if the functions /, m, and n are constant. In the
general case, the waves are plane-fronted, whereas in the
case where /, m, and »n are constants, the waves are plane-
fronted with parallel rays, or pp waves.®
This result generalizes that of Ref. 6, in which only
time-transported solutions were considered. It is itself ex-
tended to space—times of arbitrary dimension in Sec. V.
Some brief comments on the global aspects of the result are
made in Sec. IV.

lil. PROOF OF THEOREM 1
We begin by invoking the change of coordinates (1.5).
We note that putting U = ¢ = X ° in (1.10) yields
y — 1"z 1
D¢ = ¢;i’ =

Z Taa’
T() a=1
Whereas ¢;i;j¢ w = (¢;i;j¢ ;i);j _ (¢;i;j;j)¢ ! = - ¢;j;j;i *
= — D(O¢), where D =, ¢ “. This latter result may be reex-
pressed in the coordinates (X %) as

¢, = —(0¢),4,8"= —(O8)s8°°
n—1 n—1

_ Tii(i D Taa)
B=1Tp c")XB Toa=1

| 1<7'B7'aaﬁ . TBTOBTaa)

To 7'%

{

ToB=1la=1

= — TZL VrV(V37),

o]
where the operators V and V? refer to the Euclidean (n — 1)-
dimensional space with metric
([dX')? + (dX?)? + - + (dX " '), and we have again used
the fact that 2" _ ! 7, 7,, = 0, as follows from (1.8). The par-
tial differential equation f = 0, with ¢,,¢ ' = 0 in force, re-
duces to

3 2
f(¢,¢;i;i,¢;i;j¢ ;i;j) — O@f(XO, _ V 7-, . VT'V(V T)) = O
7o 7o
(3.1)
together with

n—1

S =t

a=1
which is equivalent to (1.16b). On the other hand, if we seek
time-transported solutions with ¢ = x° — 7(x'.x%,...,.x" ~ ),
the equations (1.16) reduce to

S —rx' X% x" 7Y, — Vi, —VrV(V3) =0,
(3.2)
together with V7~V = 1, where here the operators refer to
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the Euclidean (n — 1)-dimensional space with metric

ds? = (dx")? + - + (dx"~ ')*. IfEq. (3.1) is to be independent
of X°, and of precisely the same form as (3.2), then, writing
f=f(u,v,w), we have df /du = 0 and writing f = g(v,w), we
obtain

g( _ vir _ V7V(V?7)

s

To ™
=0
for all 7, and the partial differential equation (1.16a) is
g(0¢, — D(0g )) =0.

If y=0¢5£0, we write y = w/v* and A (v,y)=g(v,w), in which
case

) = 0C>g( — Vo, — VT‘V(VZT))

Vir  VrV(V37) ) ( ) Vv (V7) )
h{ — , — =0h| — Vir, — ————
i e G
=0 (3.3)
and the partial differential equation is
D (O¢ ))
h (Dd), ——=2-}=0. (3.4)
(O )?

If A is independent of its second variable then, since by as-
sumption f'is nontrivial, (3.4) implies that (¢ = ¢, a con-
stant. In that case (3.3) shows that V>r = — ¢, and so
TlaT " = Tiagp ™17 = (710177 — 7105177

= — VrV(V’7) = 0, where a vertical stroke (|) denotes co-
variant differentiation with respect to the metric induced on
a hypersurface {x° = const}. Since this metric is positive-
definite, we have 7, 5 = 0, and, a fortiori, V’r = 1,'* =0,
i.e., ¢ = 0, which contradicts the assumption that Cg=40.
Thus, if O¢5£0, Eq. (3.3) shows that [V7V(V37)/(V27)?]
=1(— V*1/7o) = I( — V?7) for some function /, and for all
70, Whence / is constant. Thus either

O¢ =0
or
D)+ K({O¢p) =0 with Ogp=£0,

where K is a constant. It is clear that K #0, since otherwise
V7+V(V?7) = 0, which as we have seen, requires O0¢ =0. We
now combine the two possibilities, and Theorem 1 is

proved. |

IV. SHEAR-FREE HYPERSURFACE-ORTHOGONAL
NULL GEODESIC CONGRUENCES IN MINKOWSKI
SPACE-TIME

As previously shown,® a shear-free hypersurface-ortho-
gonal null geodesic congruence in (four-dimensional) Min-
kowski space—time with metric

ds’ = —dt*+dx*+dy’ + dz*
is tangential to a null vector k for which there exists a real
function g(¢,x,y,z)==0such that k;, = g;,,g;ig" =0,g; jgf =0
and (g;i;‘)2 = 2g;i;jgml = - zg;’(g;j;j);i’ i‘e‘l

Vg'Vg=g,8' =0,

(O = — 2Veg-V((ig). (4.1)
The general time-transported solution to (4.1) is, without loss
of generality, of form g = ¢ — 7{x,y,z) with
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(V7> =1,
(V272 = — 2VrV(V27), 4.2)

where in (4.2) the operators V and V? refer to the three-di-
mensional Euclidean space with metric dx? + dy* 4 d2%,
and whose solution is®:

(i) 7=Ix+my+ nz+ A, wherel, m,n,and 4 are
constants satisfying /> + m?® + n* = 1 (the expansion scalar
g = — V?rof the congruence vanishes, and the hypersur-
faces {g = const} are null hyperplanes) or

() 7= +[x—xP+0—pP+@E—21"+4,
when x,, y,, z,, and 4 are constants (the expansion scalar
g/ = — V*ris 2/(r — A), and the hypersurfaces
{g = const] are null cones).

Now system (4.1) is a particular case of the class of sys-
tems referred to in Theorem 1, and therefore the general
solution of (4.1) is given by solving for g:

i) r=1I(gx +migly + nlglz + 4 (g), (4.3a)
where [/ (g), m(g), n(g), and 4 (g) are functions satisfying
1%g} + m*g) + n’(g) = 1,
(i) r= %+ {[x—x;P+b—-»el
+ [z -z} + A1),

where x,(g), ¥,(g), z,(g), and A4 (g) are functions.

We therefore have

Theorem 2: The most general shear-free hypersurface-
orthogonal null geodesic congruence in Minkowski space—
time is generated by (the normals to) either light cones ema-
nating from a single line (¢,x,,z) = (¢,(g), x,(g), v,(8), 2:(g)), or
a system of null planes.

This theorem appears to be fairly well known (cf. the
comments in Ref. 10, where it is incorrectly stated), but as far
as I am aware there is no well-known standard reference to a
proof. The theorem may be deduced as a corollary to Kerr’s
theorem,®!'~'> which provides the form of the most general
analytic shear-free null geodesic congruence in Minkowski
space-time; some further comments relating to this can be
found in Ref. 6. For a global application of the theorem, it is
necessary that the equipotentials of g in (4.2} not intersect,
which can only be achieved by requiring that the null planes
all be parallel in {(4.3a), i.e., that /, m, and n are constants, and
by choosing either sign in (4.3b) and requiring that the curve
(t,x.3,2) = (¢,(g), x:(g), ,(8), Z,(g)) be timelike (otherwise the
equipotentials intersect or the set of null geodesics is not a
congruence filling space-time, or both).

(4.3b)

V. MISCELLANEOUS RESULTS

In this section we consider special cases and generaliza-
tions of Theorem 1.

(/) 3¢ = 0; n = 4: The results of Sec. II follow immedi-
ately.

(1) 0¢ = 0; n = 3; This is a special case of (i) above,
where we now write (x°,x',x%) = (£,x,), so
_ 9% P I,
o2 " ax | oy
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and

)+ () (2 o

We may solve this by complexifying, writing 7 = jz.
Then
2
ox* gyt 3*
and

() () () -0

This system was solved earlier,* using different methods.
The general solution was given by ¢ =const or by solving

Hglx +ml@ly+niglz= )

where /(¢ ), m(¢ ), n(¢ ), and ¥{¢ ) are functions satisfying
[*(¢) 4+ m*(¢) + n*(¢) =0, and I, m, and n are not all zero.
Substituting back for ¢ in favor of z, we have

H@)x +midly —inld)t =)

Supposen(@ )=0.Thend¢ /9t = Oand¢ = ¢ (x + iy),i.e.,dis
not real. If, however, n(¢ )50, we obtain
t=1gx+mly+Alp)wherel= —il/n,m= —im/n,
A =ip/n, and I* + m* = 1, and real solutions for

¢ = ¢ (t,x,p) will exist. These solutions are in agreement with
those of the special case of (i) above, when n = 3.

(7)) ¢ #0; n = 4: We have

Vé-V{Og )+ K (Og ) =0,

Vg-Vg =0, (5.1)
with O@=£0. For a time-transported solution, without loss of
generality of form ¢ = ¢ — 7{(x,p,z), where
(£,x,p,2)=(x"x",x*x*), we have from (5.1)

VrV(V37) + K (Vi) =0,

VrVr=1
with V27r=£0. If K #0, the only (real) solutions to this are®

(a) K = 1, and 7 is the a-eliminant of

r=1[{a)x + mlaly + n(a)z + 4 (a)
and

0=1['la}x + m'aly + n'(a)z + A '(a),
where / }(a) + m*(a) + n*(@) = 1 and at most one of / '(a),
m’'(a), and n’(a) is identically zero;

(b) K =4, and

=[x —x)+—y)S+—21'" +4,

where x,, y,, z,, and A are arbitrary real constants.

If K = 0, then it follows either from the discussion in Ref. §
or from the proof in Sec. III that the equipotentials

{7 = const] are planes, and that V2r==0, a contradiction.
Therefore, the general solution of the system

D(O¢)+ KO8y =0,
V¢Vé =0
with O¢=£0 is given (when n = 4) by:

(a) K = 1, and ¢ is specified implicitly as the a-eliminant
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of
t=1a¢)x+madly+nladlz+A4(asd)

and

al dm an a4
0=— — Yy —z4—
da *+ 8ay+ da it da
where /%(a,4 ) + m*(a,¢ ) + n*(a,¢ ) = 1 and at most one of
dl /da, dm/da, and dn/da is identically zero;

(b) K = 1, and ¢ is specified implicitly by

t=+{x—x@)P+—y@)+z—z(8)}"?
+A4(¢),

where x,(¢ ), y,(# ), z,(¢ ), and A (¢ ) are arbitrary (real) func-
tions.
The case (&) corresponds to the “expanding” solution (i7) of
(4.2).

(fv) n = 2: We first show that Ol =0. For a time-trans-
ported solution without loss of generality of form
é =t — 7(x), where (t,x) = (x°.x"), we have

. . dr d3r
V¢v(Os) + K (g ) =0= i de
dr\*
+K ( o ) =0 (5.2a)
and
V6V = 0= (:—:)2 =1 (5.2b)

Clearly (5.2a) is a consequence of (5.2b), and so

7= 4 x + x, where x, is a constant; thus

V2r = d *r/dx* = 0 implies O¢ =0. Using Theorem 1, we

have that the general solution in the case n = 2 is given by

solving? = + x + x4(¢ )forg,i.e., thatd = ¢ (¢t + x), and we

recover the well-known d’ Alembert solution. This result can

also be obtained by the coordinate substitution ¥ = ¢ + x,

v =t — x in the general two-dimensional problem.
(v)n>2,K<1/(n — 2)or D (¢ ) = O; kinematic quanti-

ties: Our aim here is to show that under certain circum-

stances, viz., when K<1/(n — 2) or when D {O¢ ) = 0, it nec-

essarily folows that Tl = 0 and that the general null field

solution is given by solving

X =L@ + L+ LB+ A(P)
for ¢, where I, (¢ ) (@ = 1,2,...,n — 1) and 4 (¢ ) are functions
satisfying 27 Z | /2 (¢ ) = 1. This generalizes the result of Sec.
IL

We first employ a decomposition of the covariant deri-
vative, analogous to that used in the pseudo-Riemannian
manifolds of general relativistic cosmology.®'¢ Let
= 7{x"x%...,x" ") with V7Vr = 1, s0

Tiag = bopg = 0o + [1/(n — 2)]6h,4,

where 6,4, 0,4, and 6 are respectively interpreted as the
“expansion tensor,” the “‘shear tensor,” and the “volume
expansion scalar’ of the congruence normal to the (n — 2)-
surfaces {x°7 = const}. They satisfy the conditions

0,577 =0,0,5=064,,0°, =06,0,,7%=0,0, = 04,,and
0”, = 0. The tensor 4_; is the “projection tensor” into the
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tangent plane at each point on a (n — 2)-surface, i.e., h,5
=8op — TaTigr Rap = hgar By =n — 2, and hgh 7
= 8}, where g, is the metric induced on a hypersurface
{x° = const}. We define also the shear scalar o by
20* = 0,50"%, >0, and note that 0,5 = 030 = 0. In ana-
logy with the situation in general relativity,'® we may derive
equations which specify the propagations of ¢ and o, along
the normal congruence. Thus 8,5 =04, 7" = 745, 7"
= ThyialgT" = (Tiya™" s = Tiyia™"|p- Since 7,77 = 1, it
follows that 6, = — 6,36 “; and hence

0= —0,,0%= —{[1/(n—2)]10>+257}. (5.3a)

Also 5 = hogy 77 = @up — T1aTp), 77 = 0, s0 it follows
that &, = 0,5 — [1/(n — 2)] Ohp, ic.,

2 207
Opg = — 04,075 — 60,5 + hops
£ v9p T 5 e T S s
from which
(o) = 'aBa"’j = — crayoyﬁo"ﬁ — [4/(n — 2)]160°.

(5.3b)
If we seek null field solutions of the equation
D(0O¢) + K (O¢ )* = 0, then, following the procedure of
Theorem 1, we substitute ¢ = x° — 7(x',x%,...,.x" '), to ob-
tain

6+ K6%=0. (5.4)
Combining this with (5.3a), we obtain
[K—1/(n—2)]6%—20" =0, (5.5)

from which we may conclude that if K<1/{n — 2), then

o = 6 = 0.Similarly, itfollows from (5.3a) thatif D (¢ ) = O,
then o = 6 = 0. Thus, if either D (O¢ ) = 0 or K<1/(n — 2),
we have 0 = 8 = 0, so 7,3 = 0 and hence
r=Ix"+Lx*++1,_,x"" '+ A, wherel,

(@ = 1,2,...,n — 1) and A are constants satisfying

3n-11%2 = 1. Applying the procedure of Theorem 1, it fol-
lows that the general solution is given by solving

X=hig' + L+ L@+ A4(8)
for ¢, where /,(¢) (@ = 1,2,...,n — 1) and 4 (¢ ) are arbitrary
functions satisfying 2" Z1/2(¢) = 1.

It is of interest to note also that in the special case n = 4
[without the restrictions K<1/(n —2)or D (O¢ ) =0 in
force], aayay,go"” is identically zero, so Eq. (5.3b) simplifies,
and the propagation of (5.5) requires either § =00r & #0and

(K —1)KO* —20° =0,
where use is made of (5.3b) and (5.4). Using (5.5), it follows
thateither  =0=00r 6 #0,0=0,andK = },oro=}|0 | #0
and K = 1. These situations were discussed in Sec. IT and in
case (iii) above.

(vi) Generalization to include a covariantly constant vec-
tor field: Suppose that the function fin Theorem 1 is allowed
to depend on some covariantly constant vector field 4 . The
simplest such dependence would involve fbeing a function
not only of 4, ¢,%, and ¢, ;¢ **/, but also of ¢, 4 "and 4,4 ".
However, since 4,; =0, (4,4 ). ; = 0; in other words, 4,4 °
is constant. Hence we shall suppose that fis a function of ¢,
¢\ b, 6", and g A" Let A=a'3/dX' = b'9/3x', where
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X and x'are coordinates as in Sec. I. Then @’ = b / dX /dx’,
b'=a’dx'/dX ’, and ¢ A" = a°. Thus, if f = f(,4.",
¢..;9°%, ¢.A4") with 3f /3(¢.,A ) #0, then the technique of
coordinate transformations discussed in Sec. I will be valid
provided
2 . 2
f<X°,— Vir L VrV(V7) ,a°)=0
To T
SAxX® — 1, — V27, — V7V(V?7),a°7,) = 0 (5.6)
for arbitrary 7, and for the expressions in (5.6) to be explicitly
independent of X ° (here we have used the fact that if
g=t—r,
¢, A'=b°—bIr/Ix"
= a’dr/X ' — a®3r/3X * = a°ry).
Arguing as in the proof of Theorem 1, it follows that either
[J¢ =0, or that fis independent of its third argument, or that
(5.6) gives
VrV(Vir) 1( — Vr
(V2r)? ’
for all 7. Writing w = u/v for v#0, we define
m(w,v) = ! (u,v), so m{ — V?7/a°71,, a°) = m( — V*7/a’r,,
a’r,) for all 7, (provided a®#0), and hence m
= m( — V?7/a°7,). In this case the original partial differen-
tial equation is of form

VeV(Os) _ ( 0¢ )
(Og ) ¢4
where m = m(w) is an arbitrary function. If, however,
a® =0, then
¢;iA ‘=0
(which has null field solutions only if 4 ‘4, >0, i.e., 4 ' is not
timelike). Finally, if fis independent of its third argument,

we must have V?7/a%r, = const, and the original partial dif-
ferential equation is of form

0é + AV = 0.

a°) =1(— V’1,a°7)

To
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This last case is of considerable interest, since it belongs to a
particular class of scalar wave equations considered by
Friedlander? in his book.
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“Deformation theory” is a branch of mathematics which studies the geometry of dependence on
parameters of geometric and physical systems. Material arising from Lie group theory and
mathematical physics (e.g., in the study of asymptotic behavior of angular momentum) is applied
to study the asymptotic behavior of certain linear filters depending on parameters. A
mathematical machine which unifies many of these problems will be developed in this series.

PACS numbers: 02.30. + g, 02.10.Sp, 84.20.Ma, 84.30.Vn

1. INTRODUCTION

This paper and those to follow are a sequel to Ref. 1.
There I showed that the theory of linear input-output sys-
tems and filters is closely linked to certain aspects of har-
monic analysis and the Lie group theoretical explanation of
the properties of the Special Functions of mathematical phy-
sics.?* Now, these Special Functions often come with pa-
rameters naturally attached. It is known from earlier work*>
that certain phenomena involving the parameters involves
what is called in the mathematical literature the theory of
deformations of Lie groups and their linear representations.
The theory of linear input-output systems depending on pa-
rameters has also been developed in the last ten years.*® It is
the purpose of this paper to bring these two streams together,
and apply them to some relatively concrete problems and
formulas involving the asymptotic formulas for the Special
Functions of mathematical physics.

Much of the work in this paper will be motivated by one
example, the following formula in Whittaker and Watson
(Ref. 9, p. 367):

Jot)= lim P, (%) (1.1)

n— oo

where t—J,(t ), x—P, (x) are the usual Bessel functions and
Legendre polynomials. On the mathematical physics-Lie
group theory side, it is known that the right-hand side of (1.1)
(for finite n) is the matrix element of a one-parameter sub-
group of the rotation group SO(3,R )in the spin n-representa-
tion, while the left-hand side is the matrix element of a one-
parameter subgroup of a semidirect product of SO(2,R )and a
two-dimensional abelian subgroup, a solvable Lie group
which is isomorphic to the group of rigid motions of R 2.
Thus (1.1) represents in a concrete formula the whole geo-
metric process of deformation of SO(3,R ) and its representa-
tions over to the group of rigid motions in R 2, [This asympto-
tic formula is also a key example in the Inonu—Wigner
theory'® of “contractions” of Lie groups. The relation
between the Inonu-Wigner theory and the theory of defor-
mation of Lie groups and algebra is discussed in Ref. 4.]
System theoretically, this involves a family of linear
time-invariant scalar input-output systems, parameterized
by the integer n, n = 0,1,-.. . The left-hand side of (1.1) is the

* Supported by a grant from the Ames Research Center (NASA),
#NSG2402, from the Army Research Office, #ILIG1102RHN7-
OSMATH, and from the National Science Foundation, Grant No. MCS-
8201779.
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impulse response (or kernel of the linear filter determining the
input-output relations) of a system with infinite dimensional
state-space.' The right-hand side, for finite 7, is the impulse
response of such a system with minimal state dimension

2n + 1, i.e., the dimension of the spin n representation of
SO(3,R ). We shall see that there are important issues here in
the theory of linear input-output systems, particularly the
question of limit of sequences of finite and increasing state
dimension systems, and that of approximation of systems
with “large” (possibly infinite) state dimensions by systems
with “small” state dimensions.

An approach of M. Hazewinkel® gives us a useful math-
ematical framework to think about this area of approxima-
tion and limits of input-output systems. It is also useful to
take the Laplace transform of both sides of (1.1), the result is
that in the “frequency domain” the “transfer functions” (i.e.,
Laplace transform of the impulse response, or “symbol” in
the appropriate pseudodifferential operator sense) will not
converge pointwise, but will have some suitable “asympto-
tic” relation. It seems appropriate to look for the geometric
nature of these limiting relations in the work done by Martin
and myself'! on the geometric interpretation of the “transfer
function” as a complex-analytic curve in a Grassman mani-
fold.

The formulas for Laplace transform of both sides of
(1.1) are as folows'?:

” _ N,(s)
f P, (cost)e *dt= , (1.2)

o D,(s)

with numerator and denominator polynomials as follows:
N, (s) = (s* + 1)(s* + 9)(s> + (2n — 1)?), (1.3)
D, (s) = s(s* + 4)(s* + 16)--(s* + (2n)?), (1.4)
= 1

e "t dt = ———. 1.5
[Temman e (1.5)

The question arises of the relation between formulas (1.2)—
(1.5) as n— 0. It is seen that these are Padé approximations.
Thus, we see new and unexpected relations arise between
different parts of mathematics, motivated by certain areas of
applications.

My aim in this paper is to develop a broader explanation
in terms of what geometers call deformation theory for this
type of asymptotic formulas. There is also an innovative
mathematical feature involved in the work here. In the clas-
sical literature, limit formulas of type (1.1) are proved by
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residue calculus or estimates of terms of power series. The
techniques used here (and in previous work*®) involves the
Lebesgue dominated convergence theory applied to one-pa-
rameter groups of diffeomorphisms (often even gradient
flows) acting on manifolds. On the applied front, I believe
that techniques will be useful in broader areas of applications
of systems/filters.

I would like to thank M. Hazewinkel and G. Zames for
many conversations about this cross-disciplinary material.
In particular, I note that recent work by Zames'*'#is closely
related to this material, but uses a different mathematical
formalism, namely, the theory of the Hardy H » spaces. I
expect that investigation of the relation between the Lie
group deformation theory and approximation in the Hardy
sense will be a fruitful field of mathematical investigation.

2. THE DEFORMATION OF THE LEGENDRE INTO THE
BESSEL FUNCTIONS

As preparation for a more general setting, let us exa-
mine what is involved geometrically in formula (1.1). Con-
sider the classical Laplacian integral formula: for nth degree
Legendre polynomials with » an integer

1 T
o = —— x + (1
Zﬁj—n( (

n=0,12, . (2.1)

Let us convert this explicitly into an integral over the unit

circle S 'in R 2, that we will parameterize by z = e €C. Let &
denote a point of S ! as an abstract real-analytic manifold (so
that “@ ” is areal-analytic function on.S '), and let “do” be the
volume-element differential form-measure on S ! of total vol-
ume 1, which is invariant under the action of rotations. Thus

L-fd"z El;fj,,f“”de’ 2.2)

when o0— f/(o) is a measurable function on S '. We have

P = [ v i

where “z” denotes the complex valued function
0—e° —2(0)onS‘.

Notice that we can also write (2.3) as the integral over S !
of a meromorphic one-differential form in C?, the space of
complex variables (4, z). Set

—x3)"2cos 9)" d6

xe C,

"2z +z7 ) do, (2.3)

x=1A+4", (2.4)
= =1A2+24+4 7)1
=ih?-2+477
=iA -4
or
(xz_l)l/zzé(/l_/i—l)'
Set

=/ [A+A V4R -2 Y4z )]"z" " dz
(2.5)

Theorem 2.,1: P, (x), the value of the nth Legendre po-
lynomial at xeG, is equal to the integral over the curve z = ¢
of the meromorphic one-form @ on C X C given by formula
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{2.5), with A and x related via the linear fractional transfor-
mation (2.4). The polynomial dependence on x results (geo-
metrically) from the fact that w is a rational differential form,
and that the integral can be evaluated as a residue at the
singularity z = 0, which is rationally related to x via (2.4).
We also have the following formula in terms of natural “in-
trinsic” geometry on S :

Pt = [ 1R+ )+ 10 =2 e 2" do
(2.6)

with A and x again related via (2.4).
Now we are prepared to discuss, geometrically, the lim-
it (1.1).

P, ( cos L)
n

=J [cos—f— + %sini(z-f—z”‘)]nda
- e 2 (R ()
(cos( ))_l]n [cos—] do. 2.7

Abstractly, we have a sequence of C* functions,

fn (t’ Z),
defined on C XS, such that

. _ ilz4+z7"
lim f, (¢, z) = exp (z — )

H—> 0

for each feC, zeS". (2.8)

The right-hand side of (2.6) is an integrable function on S '.
The Lebesgue dominated convergence theorem'® then im-
plies the following result:

Theorem 2.2: For each ¢eC,

lim P, (cos (L)) = f exp(i—t cos 6 ) do. (2.9
n—oo n St 2

The right-hand side of (2.9) is the Laplace formula for
the Bessel function, hence this formula is equivalent to (1.1).

3. HAZEWINKEL'S DEFINITION OF “LIMIT” OF A
SEQUENCE OF LINEAR FILTERS

Let R, denote the additive semigroup of nonnegative
real numbers parameterized by teR, 1>0. Let C(R ) or
C (0, » ) denote the space of complex-valued, continuous
functions on R , . A (scalar, input-output, time-invariant)
linear filteris alinear map: F:C (R | }—C (R ) of thefollowing
form:

Flu)t)= fo flt —7)u(r)dr for ueC(R,), (3.1)

where the Lebesgue measurable function fiR *—C satisfies
the following condition:

b
f |f(t)| dt< oo for all a,beR *. (3.2)
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[fis the impulse response of the filter. This can be written
algebraically as

Flu)= fru, (3.3)

where * is the causal convolution' on C (R ), studied by
Titchmarsh and Mikusinski.!>'¢

In linear system theory, one often encounters families of
such filters depending on parameters and looks for natural
ways of defining limits of such systems as the parameters
vary. The standard functional analysis'* methods for defin-
ing topologies on linear operators do not seem completely
satisfactory, for reasons I will not go into here. Instead, we
will use an approach which is a hybrid of the classical and
modern techniques® ' suggested by Hazewinkel.'® One first
of all provides a linear subspace U of inputs, i.e., a linear
subspace of C (R ). Then, one imposes a family of exponen-
tially weighted sup-norms on C (R ), and requires that a se-
quence F,,F,,F,, - of filters converges to Fif, for each ueU,
the outputs

Yn =Fn(l.‘)’ n=0,12,

converges ina/l the family of norms. For details, refer to Ref.
6.

4. LINEAR SYSTEMS DEFINED BY INTEGRATION

There is another feature of Sec. 2 that is worthwhile
defining in general—the way the kernels of the linear filters
t—P, (cos(t /n)) and t—J(t ) are defined by integration overa
measure space Z. (In the case of Sec. 2, the Z is the unit circle
in R 2, with the measure just Lebesgue measure, or, if it is
identified with the Lie group SO(2,R }, just the Haar measure.

Let (Z, dz) be a space with a countably additive field of
measurable sets'® and a countably additive measure dz de-
fined on this field.’> Impose the usual Lebesgue measure on
R, , defined on the Borel sets. Let

kiR, XZ—C,

be a map which is measurable with respect to the product
measure on R, X Z and Lebesgue measure on Z such that
the following condition is satisfied:

JJ | k(t,2)| dt dz <
[a,b)xZ

for each finite interval [¢,b]CR, . (4.1)

The Fubini theorem on product measures'® then guar-
antees that the following formula

fle)= Lk (t, z) dz, (4.2)

defines a map: R, —C, which is defined for all but a set of
measure zero in R, . Further, fis locally integrable, in the
sense that

b
J | f(t)| dt < 0 for all a,beR , . (4.3)

Let us use the function defined by formula (4.2) to define
a linear filter map C(R *}—»C(R )

31 J. Math. Phys,, Vol. 24, No. 1, January 1983

Fllt)= [ ue=n\firdr
for u:t—uft) an element of C(R*). (4.4)

Use (4.2) and the Fubini theorem again to write the filter as
follows:

F(u)t) =J: u(t—f)Lk(r, z)dzdr
=LtLu(t—T)k(r,z)drdz

= J‘f ulr) kit —7,2)drdz. (4.5)

We can also estimate the exponentially weighted sup-
norms used by Hazewinkel®:

e " luft)< J:Le“”ﬂu(r)k(t—fﬂ drdz. (4.6)

5. CONVERGENCE, IN THE HAZEWINKEL TOPOLOGY,
OF LINEAR FILTERS DEFINED BY INTEGRATION

Now, let the kernel functions &, and the linear filters
they determine, as described in Sec. 4, depend on parameter.
For simplicity, in this paper the only parameter we will con-
sider will be the integers n = 0,1,2, - .

Z is a measure space with measure dz. Let

k,:R . XZ-C

be a sequence of measurable kernel functions which satisfy
the condition {4.1), hence define, for each 7 a linear filter

F.(u)= J'J ult — ) k,(r,z)drdz. (5.1)
Let

F_(u)= J: fz ult — 1) k_(r,z)drdz {5.2)

be another linear filter with similar properties.
To apply Hazewinkel’s ideas® and discuss when it may
be considered that

limF,=F_, (5.3)

we are interested in sufficient conditions for the integral on
the right-hand side of (5.1) to converge, as n— «, for fixed
t—u(t) to (5.2). This can be done, given our hypotheses, by
the Lebesgue dominated convergence theorem.

Theorem 5.1: If the following conditions are satisfied:

hm k, (t, k)=k_ (¢, 2) (5.4)
' ;:)r almost all (#,z)e R XZ,
f |k (t,2)|dtdz< oo, (5.5)
ab
f lu(t)| dt< o forabeR_, (5.6)
then, ’

lim | F,(u)t)— F_(u)t)] =0 for all e R.

n—co
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Our strategy now is to specialize Z to be a manifold with
the measures “dz” defined by smooth differential forms, and
the kernels k ( , )associated with Lie algebras of differential
operators on Z. In this paper, we will only consider the case

Z=S" the unit circle in R?, (5.7)

and the Lie algebra that the representation (depending on a
parameter) of the Lie algebra of SO(3,R ). As the values of the
parameters go to infinity, we shall be able to apply the limit
theorems sketched in this section to obtain “degeneration”
of these linear filters to those associated with a “contraction”
(in the Inonu-Wigner sense'®) of SO(3,R ) to the group of
rigid motions in R 2.

6. LINEAR SYSTEMS DEFINED BY REPRESENTATIONS
OF THE LIE ALGEBRA OF SL(2,C) BY ONE-VARIABLE
DIFFERENTIAL OPERATORS

As explained in the end of Sec. 5, we are motivated to
choose

z=S'

and the linear filters whose kernel is of the form

fle) = JZ h (2) expl(eD )( f)z) dz, (6.1)

where f,4 are functions: Z—C, and D s a first order differen-
tial operator associated with the representation of the Lie
algebra of SO(3,C). The formulas for this situation have been
worked out in Ref. 5.

Let S ! be the unit circle in C with parameter 6, i.e.,

60—z = €'

is the embedding map from S '—C. Consider the following
differential operator:

Pl
de
=iz“i, (6.2)
dz
A =isin Gi + aicos 6 (6.3)
de
e L%y, (64)
2 dz 2
A, =[4,,4] (6.5)

=icost9j—6— — ia sin 6

[ 1,1 d a —1
= 2(z z7 )z dz+2(z z7 ). (6.6)
Then, (4, A,, A,) satisfy (for fixed ), the commutation rela-
tions of the Lie algebra & of the Lie group G = SO(3,R ).
For each a€C, these families define a representation of
9 by linear maps on the C *(S''), the C =, complex-valued
functions on S''. Let D '(S ') be the Lie algebra of first order
linear differential operators on S !, considered as acting on
C =(S'"). Formulas (6.2)(6.6) define, for each aeC, a Lie al-
gebra homomorphism
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pa: G— DS,

Thus, for each aeC, the image p, (¥} is a Lie subalgebra of
linear differential operators on S '. We now ask what hap-
pens as a— o0, i.€., as f = 1/a—0.

Theorem 6.1: Consider

ﬁ_’pl/ﬁ(y) = fﬁ

as a one-parameter family of Lie algebras of differential op-
erators for 8 #0. If £ is defined as the Lie algebra generated
by the following operators

—d— , [cosd,

dg
then S—.7 ; is a smooth family of Lie subalgebras of D '(S ),
including the point § = 0. .£, is isomorphic to the Lie alge-
bra of the group of rigid motions in R 2.

Proof: (A, BA,, A)) form a basis for .7 5, which goes
over, as —0, to the Lie algebra (6.7). Q.E.D.

We can now, as in Ref. 5, p. 174, easily compute the
matrix elements of the one-parameter groups tr—expltp, (4 ),
and verify, using the geometric techniques developed there,
that the hypotheses are satisfied that are needed to apply the
methods of Sec. 5 for describing the asymptotic behavior of
these matrix elements. We see that the special example of
formula (1.1} is quite typical of the general matrix element.

—isin6, (6.7)
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The paths of integration for the new generalized Bessel transform

E. Bahar
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It is shown that the comments made in a recent paper regarding the previously developed “New
generalized Bessel transform and its relationship to the Fourier, Watson, and Kontorowich—
Lebedev transforms” are based on erroneous assumptions. The claim that the path of integration
parallel to the real axis (below the singularities of the transform function on the real axis) cannot be
transformed to a contour around the singularities of the transfer function in the lower half-plane
contradicts the very basis of the firmly established Watson transformation and the most advanced
theories in radio wave propagation over the Earth’s surface and cylindrical structures.

PACS numbers: 02.30.Gy

1. SUMMARY OF NEW GENERALIZED BESSEL
TRANSFORM

In the paper “New generalized Bessel transform and its
relationship to the Fourier, Watson, and Kontorowich-Le-
bedev transforms ,' ” the following transform pair was

derived:
E,(§,¢)=LE (v 1, € ), (1)
Evg) =3[ E(66)HE s 2
¢ 13
in which
Uo(E) = HUE) + R HPE), )

where H (&) and H ‘?(£) are the Hankel functions of the
first and second kind, respectively, v is the order and £ = kr
is the argument (k is the wave number and 7 is the distance
from the z axis in the cylindrical coordinate system,7,¢,z).
The path of integration L lies parallel to the real axis such
that all the singularities of E (v,¢ ) on the real axis lie above the
path L ( see Fig. 1 reproduced from Ref. 1). The coefficient
R, in (3) depends upon the boundary condition at £ =&5.
Thus for the Dirichlet condition

E.(lr:#)=0, (4)
R, = —H\(Ex)/H P Er). (3)

The more general expression for R, for the impedance
boundary condition is given in Ref. 1. Using (1) and (2) the
following expression for the Dirac delta function & (£ — &)
was obtained:

55(§—§o>=££¢#(5w;f’(§owdu, £<b (6)

On applying the transforms (1) and (2) to the problem of
radiation by a line source (at £ = &, ¢ = ¢,) parallel to a
perfectly-conducting cylinder of radius £, < &,, the follow-
ing expression for the vector potential was obtained:

AL6d) = [ alud 1, )
in which the solution for the transform a(u,é ) was given by
au.d)= — s,uoIHif)(go)

X [cot u cos p( — go) + sinpld — do)],  (8)
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where i1, is the permeability of free space and 7 is the intensi-
ty of the current filament. Since H P&, )4, (£ )sin p(d — &)
is an odd function of u and since it is analytic on the real axis,
thesecond termin (8) contributes nothingto4 (£,¢ Janditcan
therefore be surpressed. Thus (7) was shown to reduce to

ALd) = = Lol | HIEW, € oot ur cosuld — dold.
L
(9)
On deforming the path of integration L to the contour
C; + C, (see Fig. 1) and employing Cauchy’s integral theo-
rem to account for the contributions from the residues at the

poles of a{u,$ ) on the real axis (v = 0,1,2,3,...), it was shown
that

A.@)=ikpoly €, H D E N, (€ )cos n(g — &), (10)
where

€, = {1’ =0 11

"2, n=123,. (1)

The solution for £ > £, is obtained by interchanging £ with
&, in (10).

The corresponding Watson transform is obtained by
closing the path of integration L by an infinite semicircle in
the negative half-plane.>* “The contribution from this por-

Im{y)

L

- = R~

FIG. 1. Integration paths in the complex u plane.
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Im{v}

Cy

Re(v)

3 Cz

FIG. 2. The contour in the complex v plane showing the location of the real
and complex poles.

tion of the contour vanishes as the radius of the semicircle
approaches infinity” (Ref. 3). Thus on noting that the poles
in the lower half-plane are at the values of v, that satisfy the
modal equation 1/R, = 0 (see Fig. 2 reproduced from Ref.
3), the following Watson expansion for 4 (£,4 ) was derived
from (10):

H,'(Ex)
A[H (éx)]/Ou

XHP(E)cotumoossd—do)| . (12

The relationship between (10) and (12) is at the core of the
Watson transformation.>?

For £z —» o0 and for £z —0 the above Watson expres-
sion cannot be used and it was shown that in these limits the
solution for 4 (§,¢ ), Eq.(7), reduces to the Fourier transform
and the Kontorowich-Lebedev transform, respectively.’

Asindicated in Ref. 1, the motivation for the derivation
of the transform pair (1) and (2) was to obtain complete ex-
pansions for the electromagnetic fields in the vicinity of cy-
lindrical structures characterized by variable radius of cur-
vature p(0 <p < ) and surface impedance.* Fields
transforms have also been derived for cylindrical or spheri-
cal structures with n concentric layers.’

AEP)=~ %iV#JZ[Hlf’(Eo)

Il. EXAMINATION OF SAMADDAR'S CLAIMS

In a recent paper,® Samaddar claims that on using an
entirely different method to derive the transform pair (1) and
(2), he has shown that instead of the contour L (see Fig. 1), the
path of integration should have been the closed contour
around the singularities of R (5) [namely the zeros of
H P\(&R)]. He further states that it is not permissible to de-
form the closed contour around the singularities of R, to the
path L. Such a statement contradicts the very foundation of
the Watson transformation,? which has been securely estab-
lished for over 60 years and is the basis for the most advanced
theories in radio wave propagation around the surface of the
Earth.? According to Samaddar,® the contour L in (6) and
therefore the transform pair (1) and (2) “cannot be used for
any arbitrary function E,(£,¢ ), which has a strong singular-

ity like a delta function § (£ — &,).” To justify his statement
he maintains that the condition
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/29 <2|v|/ebg, T>1 (13)

must be met as |v|— o in order to deform the closed contour
around the poles of R, to the path L. Thus he goes on to state
*“It may be noted that since ¢ = 0 in (2.5) condition (2.13)
cannot be fulfilled and consequently the contour C in (2.5)
cannot be deformed onto the portion of L lying to the left of
the lowest-order zero of H'?(£,).” (Equation numbers of the
form (n) are in the notation of the present paper; those of the
form (m,n) are in the notation of Samaddar’s paper.)

Samaddar also states that “in the development of the
pair (1) and (2) it is assumed implicitly that E (v,¢ ) is analytic
in a horizontal strip bounded by two lines parallel to the real
axis of the complex v plane {one below and the other above).”
Nowhere in the development of the transform pair {1) and {2)
was such an implicit or explicit assumption made. On the
contrary, the transform a(u,# )(8)' contains not only an ana-
lytic part H V&4, (£ )sin u(@ — &) (that was suppressed) but
also a term proportional to cot u. Were it not for the poles
atu = 0,1,2,..., it would be impossible to obtain the correct
results (10). Based on his assumption, this author then states
“the path L in (1) can be shifted onto the entire real axis of the
v plane.” It is “evident” according to him from the proper-
ties of the Hankel functions and E {v,¢ ) that the integrand in
(1) is an odd function of v and, therefore, the integral (1)
vanishes identically. If, as this author claims, the integral (1)
“vanishes identically” the transform pair (1) and (2) cannot
be used for any function E_(£,4 ) whether it has a strong or
weak singularity or no singularity at all. Yet the transform
pair (1) and (2) from which the spectral representation for the
Dirac delta function é (§ — &,) was derived (6), yields the cor-
rect result for the fields due to a line source in the vicinity of a
perfectly conducting cylinder (10),(12).'

Again in his concluding remarks this author assumes
that in going from Egs. (2.6b) to (2.7b) in Ref. 1 *‘the trans-
form function E (v,¢ ) wasimplicitly treated as analytic inside
a horizontal strip containing the real axis in the v plane.”
However, in going from (2.6b) to (2.7b) it is only necessary to
note that the analytic terms can be suppressed without af-
fecting the final results. Stated more formally, we partition
the set of transforms into a set of “‘equivalence class of func-
tions” by means of the following equivalence relation. Any
two functions in the set of transforms E (v,¢ ) are considered
equal if they differ by a function F({v,¢ ) such that
Fv,¢)¢,(&)is odd and regular on the real axis.

It is interesting to note that the “entirely different meth-
0d””” Samaddar refers to in his paper® was also applied to the
more general problem of propagation in cylindrical or
spherical structures with n concentric layers.® Line source
excitations were considered involving Dirac delta functions.
A precise criterion for the deformation of the contour was
derived® and it was shown that these more general results are
consistent with those obtained by Bahar in his earlier work.'
Regretably Samaddar made several erroneous assumptions
and did not realize what is firmly established through the
Watson transform,”*° namely, that the integration along
the path L can be deformed to the contour integration
around the poles of the function R, (5).%*?
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Thorpe-Hitchin inequality for compact Einstein 4-manifolds of metric
signature (+ + — — ) and the generalized Hirzebruch index formula
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It is proved that the Euler characteristic and the Hirzebruch index of a compact oriented Einstein
4-manifold of metric signature { + + — — ) satisfy an inequality which is well known as the
Thorpe-Hitchin inequality for the case of a Riemannian metric. To derive the inequality, a
generalized Hirzebruch formula relating the index to the first pseudo-Pontrjagin number of the
manifold is proved. This formula may be contrasted with Chern’s generalized Gauss—Bonnet

formula for a pseudo-Riemannian manifold.

PACS numbers: 02.40. + m

I. INTRODUCTION

It was shown by Thorpe' and later by Hitchin?® that for a
compact oriented Einstein 4-manifold with a Riemannian
metric, the Euler characteristic y and the Hirzebruch index
7 of the manifold satisfy the inequality

ITI<3x (1.1)
The purpose of this paper is to show that this inequality also
holds for compact oriented Einstein 4-manifolds of metric
signature (+ + — — ). The author’s earlier result® is that
for a compact oriented 4-manifold of metric signature
(+ + — —), the Euler characteristic of the manifold is
even and is congruent mod 4 to the Hirzebruch index of the
manifold. Moreover, if the manifold admits an Einstein met-
ric of such a signature, then the Euler characteristic is non-
negative.

Every indefinite metric on a two- or three-dimensional
manifold is necessarily of Lorentz type. A compact oriented
manifold admits a Lorentz metric if and only if the Euler
characteristic vanishes.* Thus an investigation of 4-mani-
folds of metric signature ( + + — — )isimportant from the
point of view of the differential topology of pseudo-Rieman-
nian manifolds.

As remarked at the end of the author’s earlier paper,’ it
has remained open whether or not the pseudo-Pontrjagin
number defined on a pseudo-Riemannian bundle over a
manifold coincides with the Pontrjagin number defined on
the tangent bundle over the manifold.

In this paper, this is affirmatively proved for the case of
metric signature (+ + — — ). Such a coincidence enables
us to give an analog of the Hirzebruch formula between the
Hirzebruch index and the pseudo-Pontrjagin number for 4-
manifolds of metric signature (+ + — — ). Applying this
new generalized Hirzebruch formula to an Einstein 4-mani-
fold of this signature, we have the Thorpe-Hitchin inequa-
lity. It should be noted that the generalized Hirzebruch for-
mula may be contrasted to the generalized Gauss-Bonnet
formula of Chern’ for a pseudo-Riemannian manifold.

In comparison of the three types of metric signature
(+ + + +)(+ + + —),and(+ + — —), the last
type under consideration is important for the following three
reasons. (1) The first is that such a metric is the lowest-di-
mensional example of an indefinite metric that is not a Lor-
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entz metric, as stated before. (2) There is a similarity between
Riemannian 4-manifolds and 4-manifolds of metric signa-
ture (4+ + — — )since the Lie algebras so(4) and s0(2,2)
have similar isomorphisms

so(4) = so(3) + so(3), (1.2a)
$0(2,2) = s0(1,2) + so(1,2). (1.2b)

(3) There is another similarity between Einstein 4-manifolds
of metric signature (+ + — — ) and those of Lorentz sig-
nature in that there are three types, known as the Petrov
types,®’ of the normal forms of the curvature tensors.

Thus the signature (+ + — — ) becomes the primary
concern of the present paper..

In Sec. II, the generalized Hirzebruch formula is
proved along a line of thought of Chern.’ In Sec. 111, as
preliminaries, the three types of normal forms of the curva-
ture tensor for an Einstein manifold will be given together
with the Euler characteristic and the pseudo-Pontrjagin
number for each type.? In the last section, the Thorpe-Hit-
chin inequality is proved for each type of Einstein 4-mani-
fold of metric signature (+ + — — ), and the characteristic
numbers are illustrated.

Il. GENERALIZED HIRZEBRUCH INDEX FORMULA

By a manifold we mean a connected, paracompact, C ~-
differentiable manifold. Let & be the tangent bundle m:E—M
over the four-dimensional manifold M. The bundle £ is
called a pseudo-Riemannian tangent bundle if there exists a
nondegenerate symmetric bilinear form (, ) in each fiber
77 '(x), which varies in a C * way with xeM.

For the present we only consider the case that the signa-
ture of (, )is of type (+ + — — ) throughout the manifold
M. We may impose, in addition, a Riemannian structure
{, )& on &, such that {u,v)y, u, ver™ '(x), is a quadratic
form of signature (+ -+ + -+ ), which also variesina C *
way with x. Such a form exists since M is paracompact.

For a fixed xeM, a vector u,e7 ™ '(x) is an eigenvector of
{,)relative to { , )g, with eigenvalue A, if

(#os0) = A (up,0) g (2.1)

for all ver ™ !(x). There are two positive and two negative
eigenvalues. The fiber over each point x can be split into two-
dimensional subspaces 7 . '(x) and 7 _ '(x) spanned by the
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positive and negative eigenvectors, respectively, as follows:
7 X)) =77 X))+ 7T ). 2.2)
Thus any vector uer ™ '(x) can be decomposed into two parts:
u=u, +u_, (2.3)

where u_ e 7 '(x) and u _em ~ '(x). Such a structure implies
that the bundle £ can be written as a Whitney sum

§=&,+£& (2.4)

of the subbundles £, and £_ with the total spaces
E, =U.y, 77 x)and E_ = U,,, 7 '(x), respectively.

We define in terms of { , }, two quadratic forms {, ),
(, ) _ as follows for any two vectors ¥ = u_, + u__ and

v=v, +v_:
(u,v)+ = (u+,v+),

(upy = —(u_,v_).

(2.5a)
(2.5b)

Both quadratic forms are positive definite, and accordingly
define the Riemannian structures on &, and § _, respective-
ly. The quadratic form (,v) can therefore be written in terms
of these forms as

(u0) = (uv) . — (wp)_, (2.6a)
and the expression
(u) = (up) . + (uw) _ (2.6b)

defines a Riemannian structure on the bundle £.
Iné and & _, take connections @, and @ __ admissible
to {, ), and {, ) _, respectively. Then the direct sum

o=0,+to_ (2.7)

is a connection in £, which is admissible to both structures |, )
and (, ). Denote by {2, ,and {2, _, the curvature 2-forms on
£, and §_, expressed by 2 X 2 matrices, as derived from the
connections w , and w _, respectively. Then the 4 X 4 matrix

2 0 ]
,_Q:
[0 o, (2.8)

is a curvature on £.

The first Pontrjagin class p, of the bundle £ is represent-
ed by the ad(SO(4))-invariant closed 4-form 3, on M given by
the formula

det[Z, — (1/2m02] = 7*(1 + B,), (2.9)

where I, = diag[ + 1, + 1, + 1, + 1]. Analogously, we give:
Definition I: The class represented by the ad(SO(2,2))-
invariant 4-form 8, on M in the formula

det[1,, — (1722 | = 7*(1 4+ B)) (2.10)

is called the first pseudo-Pontrjagin class and is denoted by
Piwhere I, =diag[ + 1, + 1, — 1, — 1].
For such classes we have:

Proposition 2:p, = p,.

Proof: This is shown by a simple calculation as follows,
Using (2.8), we have
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det[1,, —(1/2m)2 ]

=det{l, — (17272, ., JAdet [ - I, — (1/27)02 _, ]
=det[[, — (1/2m2 ] Adet ' [ — I, — (17272 _, ]
=det[[, — (1/2m)2 | Adet [ — I, + (172702 _, ]
=det[], — (17272 ] Adet [I, — (1/2m)02 _,],

which coincides with (2.9). In the above, the last equality
holds since det4 = det{ — 4 ) for any 2 X2 matrix 4. [ ]

Now let us state the generalized Hirzebruch index for-
mula.

Theorem 3: Let M be a compact oriented 4-manifold of
metric signature (+ + — — ), and p,[M ] be the first pseu-
do-Pontrjagin number of M, a numerical analog of the first
Pontrjagin number p,[M ]. Then the Hirzebruch index 7[M ]
of M is given in terms of p,{M ] by the formula

rIM]=1p[M].

Proof: This is clear from the Hirzebruch formula
7[M ] =1 p,[M ] together with Proposition 2.

(2.11)

l1l. CURVATURES OF EINSTEIN 4-MANIFOLDS OF
METRIC SIGNATURE (+ + — —)

It is important to compare the Lie algebras so(4), so(2,2),
and so(3,1), which are the Lie algebras of the structure
groups for a Riemannian 4-manifold, a 4-manifold of metric
signature ( + + — — ), and a Lorentz 4-manifold, respec-
tively. For the first two Lie algebras, there are similar iso-
morphisms

s0(4) = s0(3) + so(3), (3.1a)

$0(2,2) = so(1,2) + so(1,2). (3.1b)
On the other hand, there is no such decomposition for
s0(3,1). These isomorphisms imply that the space A * of 2-
forms at each point is decomposed into two parts

AP=A%Y +A%, (3.2)
where A %, are the + 1 eigenspace of the Hodge star opera-
tor *, with

*2 = 1. (3.3)
On the Lorentz 4-manifold, however, the star operator for
A ? satisfies

2= _1, (3.4)

and A * cannot be decomposed in a similar way.

Now consider A ? on M of metric signature
(+ + — — ). Corresponding to the decomposition (3.2), we
introduce abasis {E’, ,E/ } (i,j = 1,2,3), the duality basis,
forA?=A% +A” ,with the following properties:
for the star operator

*E', =E',, *'_=—E'_; (3.5)
for the inner product
(ELE))=28,8 (op=+,—); (3.6)
and for the wedge product
E'. NE/. = —E'_ NE’ =¢&8%,
E'. NE/_ =0, E'_NE’ =0, (3.7)
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where the symbols used above are as follows: &7 is the Kron-
eckerdeita; é'= — &€= - 8= +1,8,, =86__=1,
8, _ =86_, =0, and w is the volume element.

The curvature tensor R is a linear transformationin A 2,
and is expressed by a 6X 6 matrix. Relative to the duality
basis, R is decomposed into four disjoint parts

R=R,+R_+R,_+R_,, (3.8)
where R , €End(A2 ), R, _eHom(4 % A ?%),

R_ ,eHom(A? ,A%).
If M admits an Einstein metric of signature

(+ + — —), then the curvature tensor takes the general
form
P, 0 0 o
R = + ]’ = [ s = =
* [0 0 R- 0 P_ Ri—=R_.=0
(3.9)
where
2y, bFB cFy
P, =|-bFp —ata, d+6 (3.10)
L —¢c+y d+6 —ata,
- |
(12 £ (/24 v,) Fv/2 0
2) P, = Fv/2 —Hs EW/2—-v) O
5 0 0 IS Fv,
with v, 5#0;
-1 F« O
B) P, =|Fx 1S +x], (3.12¢)
0 tx 1S
with «#0.
Hereafter we consider a compact oriented Einstein 4-
manifold of metric signature (+ + — —), also denoted by

M. We need the Euler forms and the pseudo-Pontrjagin
forms for the main theorem stated in the next section.

At each point of M, corresponding to each normal form
of the curvature tensor, the Euler form y is of one of the
following three types:

1) x=(/4r) S (43 + v, (3.132)
i=1

with constraints (x) in Lemma 4;

) x=1/47)[(4S) +v1 + 2y +v3)]w, (3.13b)

with v, 7£0;

(3) ¥ =0(SY2mw. (3.13¢)

Corresponding to each of the above expressions, the
pseudo-Pontrjagin form p, is of one of the following types:

3
1) p=(/r) 3 @uviw, (3.14a)
with constraints (»);
(2) Py =(1/7)(—}Sv, + 2u,v,w, (3.14b)
with v, #£0;
3) p,=0. (3.14c)
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with constraints

3
R =trP, =trtP_ = Y &a, =S, (3.11a)
i=1
S = scalar curvature,
and
3
Z a; =0. {3.11b)

i=1

The normal forms of the curvature tensor are given as
follows.

Lemma 4°: For an Einstein 4-manifold of metric signa-

ture (+ + — —), the curvature tensor at each point takes
one of the following three forms:
vy 0 0
1) P.=| 0 — v, 0 , (3.12a)
0 0 — M3t V3

with constraints

3
zél/-‘i=

i=1

I

’ 'Zl v, =0; (%)

(3.12b)

I
The Euler characteristic and the pseudo-Pontrjagin
number are obtained by integrating above forms over M.

V. THORPE-HITCHIN INEQUALITY

By Theorem 3, the Hirzebruch index form is given in
terms of the pseudo-Pontrjagin form. Thus we have:

Proposition 5: Let M be a compact oriented Einstein 4-
manifold of metric signature (+ + — — ). Ateach point of
M, corresponding to each normal form of the curvature ten-
sor given in Lemma 4, the Hirzebruch index form 7 is of one
of the following three types:

(1) ==(1/37) 23: (Euv)w, (4.1a)
i=1

with constraints (s);

2) =173 — iSv, + 2u,vo)w, (4.1b)

with v, #0;

(3) r=0. (4.1¢)

The Hirzebruch index of M is obtained by integrating
the above form over M.

Now let us state the main theorem.

Theorem 6: Let M be a compact oriented Einstein 4-
manifold of metric signature (+ + — — ). Then the Euler
characteristic y [M ] and the Hirzebruch index 7{M] of M
satisfy the inequality

I7[M]|<3y [M]. (4.2)

Proof: Consider a point of M. If the curvature tensor at
the point is of type 1, then from (3.13a) and (4.1a) we have
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[(/‘12 +v)F 2(@'ﬂiv.-)]w,

L::
+H
t
)l
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|-

1

w IIMw
-

(4.3a)

Il

1 A
— ¥ (&, Fv,)w,
6 iZl (€p:F )
where the rhs vanishes iff &y, = + v, (i = 1,2,3).
Similarly if it is of type 2, then from (3.13b) and (4.1b) we
have

1 Fr=(1/6m)[(S + v\’ + 2( 1, F vof' 1w,
where the rhs vanishes iff vi = T 1Sand y, = +v,.

If it is of type 3, then from (4.1c), 7 = 0, and hence we
have

(4.3b)

(4.3¢)

where the rhs vanishes iff § = 0. Therefore, integrating the
above forms over M, we can conclude that the inequality

3xM]F7[M]>0 (4.4)

holds. This completes the proof. d

Next we consider special cases for M, where the curva-
ture tensor has the same type of normal form at every point
of the manifold.

Theorem 7: Let M, be a compact oriented Einstein 4-
manifold of metric signature (+ + — — ), whose curva-
ture tensor is of type / at every point of the manifold. Then
for i = 1,2, the Euler characteristic y [ M; ] and the Hirze-
bruch index [ M; ] of M, satisfies the inequality

IT[M:]1<3x [M:], (4.5)

where the equality holds if and only if the curvature elements
at each point of M, satisfy the following relations:

ty Fr=W =8V W,

for My: &, =v, or &u,=—v, (j=123)
for M, vi= —1S, pr=v, or vi=145, p,= —v,
For M,, we have

M;] =0, (4.6)
and hence

x [M3]>0 (4.7)

with equality iff S = 0.
Proof: This is clear from the proof of Theorem 6. [l
The following facts are fundamental concerning the ex-
istence of pseudo-Riemannian metrics on manifolds.*
Proposition 8: Let X be a compact oriented manifold.
Then X admits a Lorentz metric if and only if the Euler
characteristic y [X'] of X vanishes.
Proposition 9: Let X be a 4m-dimensional compact ori-
ented manifold. Assume that X admits a pseudo-Rieman-

nian metric of signature( + - + — - — ), withg=2 mod 4,

2 + g = 4m. Then the Euler ’éharacteqristic y[X]ofXiseven
and is congruent mod 4 to the Hirzebruch index 7[X] of X.
Proof: It is known* that a compact manifold admits an
everywhere defined, continuous, nonsingular, quadratic
form of signature g if and only if it admits a continuous field
of tangent ¢ planes. The assertion of this proposition is di-
rectly derived from a result® of Atiyah that for a compact
oriented 4m-manifold admitting a field of tangent ¢ planes,
with g=2 mod 4, the Euler characteristic is even and con-

39 J. Math. Phys., Vol. 24, No. 1, January 1983

gruent mod 4 to the Hirzebruch index of the manifold. 0
Corollary 10: Let M be a compact oriented Einstein 4-

manifold of metric signature (+ + — — ). Then thereis a
nonnegative integer n such that
xIM]=7[M] + 4n, (4.8)

withn =0iff y [M]=7[M]=0.

Proof: The previous proposition asserts that there is an
integer n' such that y [M'] = 7[M] + 4n’. It follows from the
main theorem that n’ is nonnegative since

n'=\y[M]—71IM]1)>i37[M ]| — 7[M ])>0,
with equalities iff y [M] =r[M]=0. O

Now let us look at the situations for each M, in some
detail, where the equalities of (4.5) and (4.7) hold.

Type 1, M,: The curvature R = R, + R _ takes a diag-
onal form, which is quite similar to the normal form, ob-
tained by Singer and Thorpe,” of the curvature tensor of an
Einstein 4-manifold with a Riemannian metric. When the
conditions &/u; = v, (j = 1,2,3) are satisfied, the part R_ of
R vanishes, that is,

R=R,, R_=R,_=R__=0. (4.9)

This implies that R satisfies the so-called self-duality condi-
tion

*R=R. (4.10)
In this case we have
x[M,\] =3r[M,]. (4.11)

On the other hand, R, vanishes iff é/u;, = — v,
(j = 1,2,3). In this case the curvature satisfies the anti-self-
duality condition

*R= —R. (4.12)
For the characteristic numbers we have
xIM\] = —3r[M,]. (4.13)

Concerning these manifolds, we have

Proposition 11: For M, if the curvature tensor at each
point is self-dual in the above sense, then there is a nonnega-
tive integer & such that

¥[M,] =12, {M,]= 8k (4.14)

On the other hand, if it is anti-self-dual at each point, then
there is a nonnegative integer k such that

¥IM] =12k, 7[M,]= — 8k (4.15)
X
N . . . . . . . //
\.'o.o.-.d»zdu.o.../
Ne . . . . o/
\ * "/
K] . . . . .,
\N* . . . . o /
e e s o 7/
N e . . . 4 FIG. 1. (T,X)for M,.
N . e )/
\
N . . e/
- ./
\\ o |e 7/
\ /
\ ’
' { N | P
T T T T
16 8 0 8 16
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In both cases, k = 0iff M| is flat.

Proof: Combining (4.8) with (4.11) and (4.13), we can
easily show the desired relations.

For these situations, see Fig. 1.

Type 2, M,: Since the parts R |, and R _ of type 2 contain
a nonzero element v,, the curvature can never satisfy any
duality condition. The Euler characteristic is always positive

and its least value is 4. When the conditions v, = — 1S,
Hy=v,y(orv, =18, u, = — v,) are satisfied, we have
y[M, =%T[M2] (or _%T[le)
S? 2
=_——volM,) + = 2w
2517'2 ( 2) + 172 M, 221
=12k, k>1. (4.16)

See Fig. 2.
Type 3, M;: For M, the Hirzebruch index always van-
ishes. Therefore, the Euler characteristic is a multiple of 4 as

3s?
M.} = —— vol(M,) = 4k >0, 4.17
¥ [M;] o (M;) (4.17)
with k = 0iff § = 0. No duality condition can be satisfied for

M,. See Fig. 3.

Remark: For a compact oriented Lorentz manifold the
Euler characteristic vanishes. From a similar argument, it is
easily seen that for a compact oriented Lorentz 4-manifold
the Hirzebruch index is also zero. Thus the Thorpe-Hitchin
inequality holds as a special case, where both sides vanish.
Therefore, we may say as follows.
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FIG. 2. (r,y ) for M,.

FIG. 3. (r,y ) for M.

<+ 12

Theorem 12: Let X be a compact oriented 4-manifold.
Assume that X admits an Einstein metric. Then the Euler
characteristic y [X' ] and the Hirzebruch index 7[X ] of X sa-
tisfy the Thorpe-Hitchin inequality

[T X<y (X ],

irrespective of type of signature of the metric.

(4.18)

ACKNOWLEDGMENTS

The author is grateful to Professor Chiaki Ihara and
Professor Mineo Ikeda for discussions and encouragements.
He also wishes to thank the referee for valuable comments on
the first version of the manuscript and for telling him about
the work of Thorpe.

'J. A. Thorpe, J. Math. Mech. 18, 779 (1969).

2N. 1. Hitchin, J. Diff. Geom. 9, 435 (1974).

3Y. Matsushita, J. Math. Phys. 22, 979 (1981).

*N. Steenrod, The Topology of Fibre Bundles (Princeton U.P., Princeton,
N.1, 1951), p. 207.

®S. S. Chern, Acad. Brasileira Ciencias 35, 17 (1963).

SA. Z. Petrov, Sci. Notes Kazan State Univ. 114, 55 (1954).

"A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969), Chap. 18.

8M. F. Atiyah, Vector Fields on Manifolds (Westdeutschen-Verlag, Cologne
and Opladen, 1970).

°L. M. Singer and J. A. Thorpe, in “The curvature of 4-dimensional Einstein
Spaces,” in Global Analysis, paper in honor of K. Kodaira (Princeton U.P.,
Princeton, N.J., 1969), pp. 355-65.

Yasuo Matsushita 40



41,45
Critical behavior of the two-state doubling algorithm

D. Isaacson®
Rensselaer Polytechnic Institute, Troy, New York 12181

E. L. Isaacson®
Rockefeller University, New York, New York 10021

D. Marchesin® and P. J. Paes-Leme®
Pontificia Universidade Catélica do Rio de Janeiro, Rio de Janeiro, Brazil

(Received 26 June 1981; accepted for publication 16 September 1981)

We describe an algorithm which produces K > X K > matrix approximations to the low energy part
of the Schrédinger operator for N coupled oscillators. We carry out the algorithm analytically in
the case K = 2, for arbitrary N. In particular we show explicitly in this case how the N— oo limit

exhibits critical behavior.

PACS numbers: 02.60. + y, 02.70. + d, 03.65.Ge

1. INTRODUCTION

We describe an algorithm (calied the K-state doubling
algorithm) which produces K ? X K ? matrix approximations
to the low energy part of the Schrédinger operator for N
coupled oscillators. These operators have the form

1 X
H™N = H(N)(%:---rq/v) = '2" Z (— az/aqu + V(qj))

i=1
1 X »

+ = 2 €lg; 1 —q;)5
where g, =gy, , =0and N =24 L =0,1,2,3,--.. The algo-
rithm is a variant of one we have used'™ to obtain numerical
approximations of the lowest few eigenvalues and eigenfunc-
tions of H'Y). For the potential ¥ (¢ ) = g:¢ *: and for each K
the method yields (in the limit N— « ) an approximation »(K )
to the mass critical exponent v of H (). The sequence {v(K )}
appears to converge rapidly as K increases, for example
¥(2)~0.817,1(4)~0.969,1(8)~1.00.

Our main purpose here is to carry out all the steps of the
algorithm analytically for K = 2. In particular we calculate
explicitly the spectra of the resulting 2% X 2% matrix approxi-
mations and their critical behavior in the limit N— 0.

The K-state procedure is motivated by two observa-
tions. First,

HeN = g™ L g 4 gV
where

H(lN) = H(N)(ql’-"’qn )’

HY = H‘N'(qN+ 1seesfan)s
and

BW' = —eqngy -

Second, for many potentials including g:¢ *: , B*V is Kato
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bounded with respect to H {Y) + H'¥. This suggests that the
eigenfunctions of H'{"' + H'Y) are good approximations to
the eigenfunctions of H *") and leads to the four-step
algorithm:

(i)SetN=1and HV=H",

(ii) Let Pz be the projection onto the X 2-dimensional
space spanned by the tensor products of the eigenfunctions
of H™) corresponding to its lowest K eigenvalues. Then de-
fine’

HEN=pEN(FW) L N 4 BN)pan)

(ili) Compute the K lowest eigenvalues e*V)<-..<elZ"!
and corresponding eigenfunctions ¢2V),...,y2V of H @M,

(iv) Double N and go to (ii).

We carry out these steps for K = 2 when V(¢ ) is even
and the lowest two eigenvalues of H " are nondegenerate. In
this case the approximate mass gaps my = e*) — el¥' de-
pend on ¥V (g) through m, and x,=(¢'"|q|¢'").

In the remaining sections we show that

(1) The mass m _ =lim m, exists and the dimensionless
ratio m=m__ /m, depends only on the dimensionless pa-
rameter Z, = m,/ex3.

(2) The dimensionless ratio m(Z ) satisfies the recursion
relation

m(Z)=f(Z)m(h(Z))

for two elementary functions f(Z ) and 4 (Z).
(3) There is a unique positive value Z, for which

Z, = h(Z_)~2.553 484 559 6885---

(4) m(Z ) exhibits critical behavior, i.e.,

mZ)>0 for Z>Z,
m(Z)i0 as ZIZ_,
mZ)=0 for Z<Z,

(5) m(Z'} is analytic on a complex neighborhood of (Z,,
wl.
(6) There are positive constants D,,D, for which

Dy(Z — Z)P<m(Z)<D,(Z — 2.,
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when Z>Z_, where
vi2)= —Inf(Z.)/In h’'(Z.)=0.817 266 06....

We point out that the mass m _ produced by the two-
state doubling algorithm may be regarded as an approxima-
tion to the mass gap of the exactly solvable one-dimensional
spin chain solved by Stoeckly and Scalapino in Ref. 6. For
that model Z, = 2 and v = 1. Hence the two-state doubling
approximation yields the critical point to within 30% and
the mass exponent to within 20%. Therefore, we do not ad-
vocate the use of the two-state doubling algorithm to obtain
accurate approximation of the critical behavior of H ().
Rather our purpose is to illustrate the critical behavior in an
exactly solvable case. Also, we show in the case K = 2 that
the doubling algorithm can be viewed as a mapping I from
a space of K ? X K ? self-adjoint matrices into itself with the
following properties: Let

M(ZN)=FK [M(N)] ZFKOFKO‘"OFK [M(”],

where M ) denotes a K * X K ? matrix representation of
H™' — &1 Then M ™) converges as N tends to infinity to a
fixed point of the mapping I'. In the g:¢ *: case there is a
one-parameter family of matrices which get mapped into 0
after infinitely many iterations. All other matrices get
mapped ultimately into nonzero fixed points of ', with
positive or zero mass gap.

2. TWO-STATE DOUBLING ALGORITHM

We carry out the algorithm for K = 2 and calculate ex-
plicitly the quantities of interest. When N =1, H' = H",
and

H{"Mg,) = e"yiMg,),
fori,j=1,2. Also,
2
P(22)= Z IW.',,‘MW:',;',:

=1
where

Wi,j E'ﬁ?’(?l)%“”(‘]z)
are the eigenfunctions of H{" + H". Thus
H® =pP[HV + HY + BVPP
= i [(e(i” + e(jl))‘si,i’ 51,1'
L =1

hi=1

- in,i'Xj,f ]|Wi,j><'1/i'

T | ’
where

Xi,j5<¢f'”(4)|q|'/’}”(4))-

The lowest two eigenvalues and eigenfunctions of H# @ are
(ignoring the nullspace of P %)

=+ o) — () — P 4+ ),
et o) et
W = ¢(g1q)) = a¥,, +b¥,,,

Y = yg192) = (V1 + Yo/ V2,
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where
a=[21+2Z% -2Z,(1+2}))]7'3
b=(—-Z,4+(14+2Z%)"*/a,
and
Z, = (&) — e")/exi.
For general N we obtain the matrix representation
EMQI+IQE™N —exWMex®™
of H M in the subspace spanned by
{¢$N’(41’---,9N)'/’,('N)(4N+ 1 :---»42N)}§j= 1+
Here

E(N)_(e‘lN) 0 )
o e
1 O)

I =
(O 1/

0 X
e 6.5)
Xy 0

and

Xy = <WIN)(qlr“'!qN)|qlI'p(ZN'(ql""’qN))'

The diagonal elements of X " are zero because V' (g) is as-
sumed to be even. The eigenvalues of H '*V' satisfy the recur-
sion relations

e = o) 4 V) — ((elV! — ) + €x3)' 2,

€N = o) 4 o) — exd,

)= o+ eV + e, i
V) = o) ) 1 () — eV + €34 )112,

The main quantities of interest are the masses m,, de-
fined by

my =éef¥ — e
From (1) it follows that

myy = (my +€2x‘1‘v)”2_€x12v’ (2)
and from the definition of x, it follows that
1 [exh +(=my +(my +€x3)'7)])

€Xoy =

2 e+ (—my+my+ )P
(3)

Defining the dimensionless parameter
Zy =my/exy, (4)

we get
Zn =h(Zy)=2Z% + 1}1/2
X(Z% + V"2 = 1)A(Z% + )24+ 1). (5)

Equations (2) and (3) can be written in terms of Z,, as
follows:

myy =my{(l+ VVZ3)V2—1/Zy)
=my f(Zy), (6)
2 exy [1+(Z%+1)"?=2Z,)]
€Xoy =
2 14+(Z% +1)"2—-2Z,)
=exyk(Zy). (7
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Iterating these formulas yields for N = 2%,

L1
my. =my [[ f(Z,4), (8)
k=0
L—1
e =ex} [[ k(Z,). (9)
k=0
3. CRITICAL BEHAVIOR

We establish certain properties of the elementary func-
tions A, f, and k from which the critical behavior of the model
follows.

Properties of h (2 ):

(1) A(Z) is analytic in the Z-plane slit from — i to .

(2) A(Z) is strictly increasing and strictly convex in
[0,00); #'(0) =0, h'{0) = 2, and £ (0) =0.

{3) There is a unique value Z_ in (0, o ) for which
h(Z.)=Z,. (Wecall Z, the critical value of
Z,Z, =2.553 484 559 688 537---)

It follows easily that as N— oo,
Z,10 if Z, <2,
Zy=Z. if Z,=2,, (10)
Zyto if Z,>2Z.

The convergence above is at least geometric.
Properties of f(Z ) and k (Z ):
(1) f(Z)and k (Z ) are analytic in the extended Z-plane
slit from —ito 1.
{2) f(Z) is strictly increasing on [0, o],
f0)=0, and f(w) = 1;
k (Z) is strictly decreasing on [0, 0 ],
k{0)=1,and k(o) =4.
(3) f(ZV/k(Z) = h(Z)/Zasfollowsfrom(4),(5),(6),and
(7). Therefore f(Z,) = k{Z,) by Property (3) of h(Z).
Formulae (6) and (7) and the properties above imply that the
sequences {m, } and {ex} } decrease monotonically as
N = 2" «. Therefore, they converge for all positive values
of Z,. We denote their limits by m_ and ex? , respectively.
1t follows from (10), Egs. (8) and (9), and the properties
of A, f, and k that as a function of Z, (with m, fixed),

m_ =0 and ex’, >0 for Z,<Z_,

m_ =0 and ex2 =0 for Z,=Z,, (11)
m_>0 and ex? =0 for Z,>Z,.
(See Fig. 1.)

Remark: Consider the mapping I” from the first quad-

o A 1
FIG. 1. Critical behavior of the mass m _ and ex? .
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£X

FIG. 2. Action of I'.

rant to itself defined by
I (m.€x}) = (my€x3).

Each point on the nonnegative axes is a fixed point for I".
Actually, these are the only ones since I"is strictly monotone
in each of its variables. The curve m/ex” = Z_ is mapped
into itself. A point on this curve gets mapped into another
point on this curve closer to the origin under the action of I".
A point lying below this curve gets mapped into a point clos-
er to the m axis. A point lying above this curve gets mapped
into a point closer to the ex? axis (see Fig. 2). The mapping I”
on the pair (m,ex?) induces a mapping I, on the renorma-
lized 2% X 2? matrices M ¥’ described in the introduction.

4. THE HIGHER SPECTRUM

Using Egs. (1) and (2) we obtain

5V — o) = (m, + Exh) 7 + exly

=m,y + 2€x5
and

e(42N) _ e(lzzv) — 2(m12v + 62x?v)1/2

=2m,y + 2€x3,.

Denoting the limits (as N— o ) of these two equations
by m, and m” , respectively, it follows from (11) that (see
Fig. 3)

m,_ if Z,>Z,,
{Zex2 if Z,<Z,,

it 2,52,
2ex?, if Z\<Z,.

FIG. 3. The full spectrum.
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5. ANALYTICITY OF THE MASS m

We define the dimensionless mass m by

m(Z)=m_ /m,= T[] fIZ,)

k=0

This may be rewritten as

mz)= [[ fr“2), (12)
k=0
where & “(Z) = hoho...oh (Z). The functional equation
m(Z) = flZ)m(h(Z)) (13)

follows easily.
Formula (12) can be extended to include large complex
values of Z. In fact for |Z | sufficiently large we have

flZ)=1-1/Z+0(1/Z%,

so that
B h":Z) +0[(h":Z))2”'

mZ)= ]] {1
k=0

To prove the analyticity of this product for |Z | sufficiently

large it suffices to establish the uniform convergence of the

series

o

S ol

“ol h5(Z) izl
For |Z | large, |h(Z)| > (1 + 8)|Z | for some &> 0 so that
[h*(Z)| > (1 + 8)¥|Z |. Therefore the series above is bound-
ed by

20

2

k=0

const < 1 i 1 cw
RZ) 1T 2] o 8k

Now the region of analyticity can be extended by using
the functional equation (13). First m can be continued ana-
lytically from a complex neighborhood of (Z, 0], Z> Z_ toa
complex neighborhood of (h ~YZ ), ] because fand k are
analytic. Also, from (10) it follows that A ~ *(Z ) converges to
Z,. Therefore m can be continued analytically to a complex
neighborhood of (Z,, ») by repeated applications of the
functional equation.

We remark that for the g:¢ *: case m, and ex? are analyt-
ic functions of the parameter g in a complex neighborhood of
(0, o0 ). It follows that the mass m _ (g) = m,(g)m(Z,(g)) is ana-
lytic in a complex neighborhood of (0,g.).

6. THE EXPONENT v

In this section we establish the following behavior of the
mass near the critical point: there are positive constants D,,
D,, and v for which

m(Z)=D(Z)Z—Z.)"

where 0 <D, <D{Z)<D, < .

The critical exponent v can be calculated explicitly in
the following heuristic way. Assume D (Z )is constant. Evalu-
ate (14) at two points Z, and Z,, take logarithms, and sub-
tract one equation from the other to obtain

_om(Z) ZI—ZC)
v=log m(zz)/ % (zz—zc '
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Z>Z,) (14)

By choosing Z, = 4 (Z,) and using (13) we get

m(Z,) 10( Z,—-Z )
mp(Z)) \k(Z,) - Z.

Zl - Zc
- szl =)

The value of v is then obtained by taking the limit of the
expression above as Z,1Z .:
= —log f(Z,)/log h'(Z.) (15)

(explicitly v = 0.817 266 06.-.).
Given the value of v in (15) we define D (Z ) by (14). By
(13), D (Z) satisfies the functional equation

v =log

D(Z)=1Z)D(h(Z)), (16)
where

NZ)= f1Z)[(h(Z)-ZMZ~Z,)]"

Properties of 1(Z):

MIZ)=1+0(Z— Z,)by (15} since ! is
differentiable.

{2) I{Z ) 1s strictly increasing on [0, « ] because f(Z ) is
strictly increasing and 4 (Z) is strictly convex.

1{0)=0and /() =2"
We show that

0 <D, =lim inf m(Z)/(Z — Z_)*

VAV
< lim sup m(z)/(Z -~ Z.)’=D, < ».
z\Z,

In fact we obtain numerically that D (Z,)~0.48.... lterating
(16) yields

D(k~*Z)=DZ) ] 1 ~*2) (1)

Fix Z,> Z_. Then the product in (17) converges uniformly as
N— o for Ze[Z,,h (Z,)]. Therefore

D,<max{D(Z):Ze[Zoh (Z)1} ] L1h ~*(h(Z),

k=1

D,>min{D(Z):Ze[Zoh (Z)]} ] 11k ~*(Zo).
k=1

Remark: In an analogous way we can show that there
are positive constants D ;, D ;- and v’ for which

m(Z)=D"(Z)Z.-Z) (Z<Z.),
where 0 <D <D ~(Z)<D; < = and

v = — logk(Z.)logh'\Z,).
From Property (3) of fand £ it follows that

Vv =w.
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Direct approach to the periodic solutions of the muitidimensional sine-

Gordon equation

J. Zagrodzifiski
Instytut Fizyki P.A.N., 02-668 Warsaw, Poland

(Received 22 July 1981; accepted for publication 4 September 1981)

A number of identities for multidimensional theta functions and their derivatives are derived.
Application to the nonlinear partial differential equations is exemplified for the sine-Gordon
equation. In consequence, the multidimensional sine-Gordon equation can be reduced to a

functional equation, and then to a set of algebraic equations. Several particular cases are also

discussed.

PACS numbers: 03.40.Kf

1. INTRODUCTION

The problems associated with nonlinear partial differ-
ential equations (NL-PDE} have been in the center of interest
of theoretical physics for more than fifteen years. This inter-
est is still growing. More and more problems arise and await
solution, mainly in nonlinear optics, plasma physics, super-
conductivity, quantum field theory, and the like.

There are, however, some problems which seem to be
particularly important for the further development of the
theory and its application in physics. In our opinion, the
multidimensional periodic solutions of NL-PLDE'’s particu-
larly of the sine-Gordon (sG) or Korteweg—de Vries (KdV)
equation, can well be considered among these problems.

There is a vast literature on the subject of periodic solu-
tions of NL-PDE’s,'~" mainly inspired by the inverse scatter-
ing method.

As is known, in the case of KdV or sG equations with
the imposed requirement of periodic solutions, the applica-
tion of the inverse scattering formalism leads to expressions
involving an abstract theta function (©-f). However, as yet
only the periodic solutions in (1 + 1)-dimensional space have
been thoroughly investigated.

In the present paper, we intend to give an insight into
the question of multidimensional solutions of the sG equa-
tion, generalizing to some extent the well-known results for
the (1 + 1)-dimensional case.

The outline of the paper is as follows. In the first part we
derive some fundamental identities for the abstract multidi-
mensional ©-f and its derivatives. Next, using the previous-
ly-derived relations, we formulate a few theorems that re-
duce the question of the solution of a multidimensional sG
equation to a purely algebraic problem. Some preliminary
results concerning these problems were already announced
briefly in Ref. 8.

We want to emphasize that our approach is consider-
ably different from that presented in papers on abelian inte-
grals and their application to the Riemann ©-f in soliton
theory. We are interested here in algebraic identities, recur-
sion formulas for the &-f and, most of all, for its second
derivatives, which would be useful directly in the analysis of
the multidimensional sG equation.
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2. IDENTITIES FOR THE THETA FUNCTION

We provide the following definitions:

i. C*—the g-dimensional complex vector space;

ii. Z 5—the g-dimensional lattice, i.e., the set of g-di-
mensional vectors k with integer (real) components k; (k;
=0, +1, +£2,..,i=1,2,.g); and

iil. D *—the g-dimensional “die” (cube), i.e., the set of g-
dimensional vectors € with components €, taking only two
values,O0or 1 (e, =0,1,/1=1,2,....8).

We adopt here the following definition of an abstract or
multidimensional 6-f, of argument zeC# '-7;

6(z|B)= Y explin(2z’k + k-Bk)], (1)
keZ ¢
where B is the g-dimensional symmetric complex matrix, z-k
denotes the scalar product

zk = i z:k,,

i=1

and the sum is over the lattice Z 5:

keZ® k= — kg = — e
The series (1) will be convergent if there exists C >0,
such that

Im(k-B k)>C (kk). (2)

Matrix B is known as the period’s matrix, if the O-f is
defined by means of abelian integrals. Although we do not
proceed in this way, our results can supply some information
to the analysis of ©-f from the abelian-integral point of view.
An exhaustive analysis of the ©-f in terms of abelian inte-
grals and differentials on a Riemann surface can be found in
the previously cited papers. Some algebraic properties of the
O-f’s are discussed in Krazer’s monograph® devoted to the
O-fs with characteristics, which form a broader class than
the 6-fs considered here (cf. also Ref. 4).

The function defined by (1) is called by several authors
an abstract G-f, while others prefer to call it multi-dimen-
sional ©-f. Since, in fact, it is a scalar function of g-indepen-
dent arguments, the first designation seems to be less legiti-
mate. However, we use both terms equally.
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The O-f given by (1) is quasiperiodic; it has the following
properties'>7*:

O(z+q|B)=06(z2|B), qeZ° (3)
O(z + B/|B) = {exp[ —in(2z + B;)]}O(z|B),  (4)
6(—z|B)=6(2|B), (5)

where B is the jth column of matrix B and B;; is ist j, j
element.

Applying (3) repeatedly we have for each qeZ ¢ and
zeC?

O (z + Bq|B) = exp[ — im(2z-q + q-Bq)]O (z|B).  (6)
One can prove also that
[6(z|B)F

= Y explim(2ez + eBe))O (Be|2B)O (2z + Be|2B). (7)

ecD®

Proof:
6%z|B)

=3 5 exp{ir[2(m + n)}z + m-Bm + n-Bn]}

meZ*® neZ¥

= 3 3 expli2r{qfz + Ba) + (n — qBn]}

qcZ® necZ¥
= Y explin(2z-q + q'Bq)1© (Bq|2B), (8)
qeZ®
where the sum is over the lattice Z 8.

Substituting q = 2p + €, where peZ %, eeD?, Eq. (8)
takes the form

Y explin(2ez + €-Be)O (Be|2B)]
ecD=

X Y explim(2p+2z + Be) + p-Bp]}

peZ®

= Y explim(2ez + €-Be)|O (Be|2B)

ecDF¥
X6 (2z + Be|2B). 9)
Observe that the sum is now over the “die” D # and thus
it contains only the finite number of elements (28).
For the case z = meZ ¢ we have

O im|B)= 3 (— 1)™explire-Be)©*(Be|2B). (10)

ecD?®

Relations (7), and also (10), can be inverted. If we
changq the variables, z—z + 8, (8D #) in (7), multiply by
(— 1)*®, and then sum over §, since

> (== =25, (11)
beD=
(where 6, . is the Kronecker delta), we obtain

O (2z + Be|2B) = SXPL—i7(2eZ + eBe)]

2%6 (Be|2B)
X 3 (= 1)°°0%z + 18|B), (12)
kpg
or
©(2z|2B)=2"3%0 "(O]ZB) z 62(z + QSIB). (13)
8<D*
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Here the sum again is over the “die” D,
Substituting z = 0 or z = € = 0, {12) yields,
respectively,

O(Bel2B) =272 T (- 11*0 2(5513)]”2
8eD*

Xexp[ — ime-Be/2], (14)

or
2 172
oopB) =2 6 (gsw)] . (15)
beD?®
For the case of only one variable all the formulas (7)-
(15) simplify to already-known results.'®"'2 For example, re-
lation (13) represents the multivariable variant of the Landen

transformation. '®
One can prove®'? that

Y explim(2nz + n-Bn)]
neZ®

=(—i)"¥*detB)"'* Y expl — im(zn}B "'z +n)],
neZé® (16)
which in O-f language is
6 (z|B) = (— i)~ ¥*detB)~"/?exp[inz:B ~'z]
X6(B~'z| —B"), (17)
and is the multivariable version of the modular
transformation.®~'%:2

Combining (17) and (13), we obtain another useful
representation: '

6(z|B)O(0|B)= 3 explin(2ez+ €B¢)16 %z + Be|2B),

eeD?®

(18)
or
OB)=|S explire-Be)0?(Be|2B )] -
X Y {explim(2ez + €Be)16*(z + Be|2B }.
ecD?¥ (19)

Similarly, one can derive the relation between ©-f ’s of
matrices B and 4B. Indeed, substituting k = 2n + ¢, neZ?,
€cD %, by definition (1) we have
O(z|B)

=Y Y exp{ir[2(2n+ €}z + (2n + €)}B (2n + €)]]
neZ* eeD*

= Y explin(2ez + €-Be)]

ecD?®

X Y expli4n((z + Be)z + n-Bn]}. 120)

ncZ®

Thus finally

O (z[B)= Y exp[im(2ez + €Be)1O(2(z + Be)|4B). (21)

eeD?®

Shifting the argument z—z + 48, multiplying by
( — 1)®><, and making use of (11), relation (21) can be inverted:
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20 (2(z + Be')|4B) expim(2€’z + €Be')]

=3 (— 16z +15|B). {22)
deD#
Thus for ¢’ =0,
O(2z|4B)=2"¢ Z O (z + 18|B), (23)
deD?’
and
9(z|B)=2‘gZ O (A(z + d)|iB). (24)
deDs

Similarly, from (6), after an appropriate manipulation
of indices, the product of the O-f ’s takes the form

6(z,|B)O(z,|B)
= ¥ explin(2nz, + n-Bn)]O (z, + z, + Bn|2B)

neZ®

Y explim2e-z, + eBe)]O (2, — 2, + Be|2B)

ecD?®
X6 |z, + z, + Be|2B), (25)
or

6(z,|1B)O(z,|B)

= Y explim(2ez, + eBe))
€D*¥
X O(z, — z, + Be|2B)O(z, + z, + Be|2B).  (26)
The first sum in (25) is over the lattice, while the second one is
over the *“die”; thus it is finite. If z, = z,, relation (26) re-

duces to (7).
Then comparing relations (25) and (8), it follows that

S [6(2z+ Bn|2B) — 6 (Bn|2B)]

neZé

X exp[im(2n-z + n-Bn)] =0, (27)
and next
2 exp(irn-Bn)[Jd, © {z|2B)],_ 5. =0, {28)

neZ®

where here and henceforth the derivatives with respect to z,
(f=1,2,...,8) are designated by J, .

Next we derive a few indentities relating the 6-fs of
parameters B and 2B in the spirit of the Landen
transformation. '

First, substituting z,—z, + 19 in {25) and summing
over §, by (11) we have the identity

6(z, —z,|2B)6 (2, + 2,|2B)
=27% % Oz, +15|B)O(z, + 15|B), (29)

beD?
for arbitrary z, and z,.
In particular, putting z, = z, + } n, peD ¥, we obtain
the relation

O (22 + 41/ 2B)6 (128

=27% % O(z+iv|B)O(z + }v + p)|B), (30)

veD#
which for p = O reduces to (13) or (15). Now substituting
z—2z + i in (13}, and comparing with {30) we get the
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identity

O(u2B) T %2+ 15 + juiB)

deD*
= O(028) ¥ O(z+v|B)O (z+ Y+ VIB). (31]
veD?®

On the other hand, substituting z;, = 0 in (29), we have
0%2[2B)=2"%F O(8|B)O(z+15|B), (32)
deDs

which is the representation of the square of the ©-f in terms
ofthe sum of linearly independent functions & (z + 18| B), (cf.
Appendix B).

Similarly, relation {30) allows us to determine uniquely
6 (2z|2B )by B {z + Lv|B}. Theinverserelation isnot unique,
however. Indeed, multiplying (30) by { — 1)>* and summing
over peD £, we obtain

S S (- 1P*O(z+ iv[B)O(z + 4n + V)|B)

ueD? veD¥
=25 Z (—1°*O (}n|2B)6 2z + Lp|2B). (33)
peDs
Substituting p—p + v, the left-hand side of (33) re-
duces to a perfect square and (33) becomes

2
[ T (— 156z + B )]
veD*®
=223 (~- 1**6 (1n|2B )6 2z + Lp|2B). (34)
neD#
Taking the square root, by the standard technique we
find (for: |Re(z;)| <)

O (z+ iv|B)
=787 Z 7.8(__ l)b-v[ z (_ 1)611
&eD¥ peD#
. 172
XQ(%uIZB)6(2z+%p,|2B)] , (35)

where 75 are the square roots of unity (arbitrarily chosen),
i.e., 75 can take the values - 1.

The choice of the set of 75 determines the variety of
solutions @ (z| B ) and the number of different solutions is 2%,
where g is the dimension of the die D é. Thus putting
15 = ( — 1)™®, we can denote these different solutions in (35)
by 6_(z + Iv|B).

It is also possible to change the shift of an argument of
O-ftotheshiftin the B domain. Letusconsider @ (z|B F @),
where Q denotes a symmetric matrix whose elements g; are
(real) integers. We have

O(z|B + Q)
=> (- 1) exp[im(2zn + n-Bn)]

neZ?®

= Z (— 1)¥" exp[im(2z-n + n+Bn)]

neZ®

=0O(z+q|B), (36)

where q = (qll’gZZ"“qgg)‘
These formulas allow us to confine the variety of B ma-

trices to a set of matrices whose elements have real parts that
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satisfy
|Re b;;1<1/2, (37)

because one can always subtract an integer.

3. APPLICATION TO MULTIDIMENSIONAL sG
EQUATION

In the application to NL-PDE we require the relations
involving partial derivatives of the ©-f. We report here a few
formulas involving the first and the second derivatives.

Theorem I: For any & (considered here as an arbitrary
parameter, but in further application usually choosen as
deD¥),

d,1n[O(z — 18|B)O ~'(z + 15|B)]

_ i 62(z+lp.|B) 38
_”gy vl —J—GZ(ZIB) (38)

and the coefficients ¥, (§) are independent of z and given by

LB =3 (- ™

y 3,,10 (2w + Be|2B) exp(i2mw-e)]|, - _ s
290 (Be|2B)

s

(39)

which means that ¥, (8) are expressed as the finite sum of
the derivatives of the ©-f ’s, but now at fixed points deter-
mined by the set Be.

Proof: The numerator of the left-hand side of (38), tak-
ing into account (25}, can be written as

3,[@z—wB)Oz+wB)],_ _,
=3,,(6(2w + Be|2B)O (2z + Be|2B)
Xexp{ir[2e(z + w) + eBel}), _ _ s

= Y {4.,10(2w + Be|2B) exp(i2me-w)] }, _ _w
X O (2z + Be|2B) exp|im(2ez + €-Be)]. (40)
|

6(z|B)3,d,0(z|B)—d,6(z|B)d, O (z|B)

3,,8., 16 (2w + Be|2B) expli2rew)] |y _ o

Next, using formula (12), relation (40) becomes

S T 25— 1)*0 ~'(Be|2B)0 %z + u|B)

peD* eeD*

Xd,,[0 (2w + Be|2B ) expli2mew)], _ _ 5. (41)

Relation (38) is useful, for example, if one wants to dis-
cuss periodic solutions of the KdV equation. Obviously, the
form of coefficients ¥, () is not determined uniquely and
using the previously given identities, one can easily find oth-
er equivalent forms.

Let us now derive the formula for the second (mixed)
derivative of the ©-f.

Theorem II:

.02 1
3,0, n0@B) = 3 oy S ETBIB)
' deD*# 6 (Z|B )
where the coefficients 2 |/ are independent of the variable z
and are given by

ﬂgj=2—1g+1) 2 (— 1)96
ecD*

3,0, [0 (2w + Be|2B ) exp(i2mew)] |, _,
x S
O (Be|2B)

(43)

Thus, similarly, as in the previous formula, the 2 § are
given in the form of a finite sum (over die D ) of the O-f
derivatives, again at fixed points. Another, equivalent form
of the coefficient 2 §/ can be found in Ref. 8.

Proof: Using the definition (1) let us consider the form
9(Z|B )az,-azje(le ) - az,-e (Z|B )azle (le )

=1{0,9,[6+wBOz—wB)}, _,  (44a)
By the relation (25), as in Theorem I, the right-hand side of
(44a) can be written

9,,0,, [0z —w|B)O(z+w|B)]

=Y 3,0, 62w + Be|2B) expli2mw-e)]

esD?

aP P (Bl

deD? ecD?

Since the left-hand side of (45) represents the numerator of
aziaz] In{O(z|B)],

relation (45) proves the theorem (42), yielding the coefficients
in form (43). In this manner the second derivative of In
reduces to the sum of 2¢ elements.

The collection of identities for the ©-f’s can be supple-
mented by another one, which will become important later
on. The following identity holds:
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22+19 (Be|2B)

X O (2z + Be|2B) exp[im(2z-€ + eBe)}. (44b)
Thus, applying (12) we finally find
] 62(Z + %8|B ) (45)
I
Theorem III:
[©(z + 1e|B)O (z|B)]*
=27% 3 O(e+d+mB)
d.v.umeD?
XO (e £ 8) + iv + 1 +m)liB)
XO (10 +in[iB)O (z + 13 + iv[iB), (46)

where €D ® and is fixed. The signs in the first two terms on
the right-hand side can be either both positive or both nega-
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tive. Relation (46) can be proved by applying the relation (29)
three times. Indeed,

rhs.of (46)=2"% Y O(ife+8+p+v)|iB)

d,v,ueD ¥

X6 (Hv + w)liB)6 (38 + ju[iB)

X O (z+ 18 + Iv|1B). (47a)
Changing the indices p + v—p,
rhs. (472)=2"% 3  O(ie + 8 + p)|iB)
&, v,ueD¥
X O (3|3B)O (18 + Yu + v)|iB)
XO(z+ 10+ iv|iB)
=2-% 5 O(e+ 8+ piiB)O(uliB)
d.ueD*
X6 (z+4(d + pn)|iB)O (z + in|iB)
=2"%% O(z+i€|B)O(z — i€|B)
peD*
X O (1n[1B)O (z + in[iB)
= 6%z + le|B)O*z|B), (47b)

which concludes the proof.

In Appendix B we show that the functions
O (z + 16 + Lu|iB) for &, peD ¢ form a set of linearly inde-
pendent functions (for fixed B ). Thus, relation (46) represents
the expansion of [ (z + €| B )O (z{B )] in terms of the finite
sum of the linearly-independent functions
O (z + 18 + Ju|LB). Letustry toapply theformula (42) tothe
multidimensional sG equation:

N
S & W=sin¥. (48)
k=1

It is convenient to write the sG equation as above and
eventually introduce the time # by the substitution x,, = it.
By d (deD ) we denote the g-dimensional vector

d=(L1,..,1). (49)
Koziel and Kotlarov? (see also Refs. 1 and 7) found that
the g-periodic solution of a (1 + 1)-sG equation has the form
¥ =2iIn[O(z + 1d|B)O ~'(z|B)] + C, (50)

where z = ax + B¢ + v is a g-dimensional vector; a, 3, ¥
and C are constants.

We shall try to determine these constants, particularly
o and B, in relation to B, and also to generalize our results in
order to describe more than only the (1 + 1)-dimensional
case, e.g., the (N + 1)- or better [(V — 1) 4 1]-dimensional
case.

We assume the solution ¥ is in the form

¥ =2/1n[O(z + 1d|B)O ~'(z|B)] + (1 F l)m/2, (51)
where z = (2}, 2,,...,2,) and

N
z,= Y @, +2,0, p=12,.8 (52)
j=1

Here a,; and z,,, are constants.
The set a,,; forms the matrix g X N (in general rectangu-
lar!) We denote

N
Ao = 2 G0 (53)
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Since

aJZ‘k = i (axkzpa"kzq )az,,alq’ (54)
pg=1
the sG equation (48) becomes
S 4,,8,8, ¥ =sin¥, (55)
pg=1 !

and by (51) and (42) takes the form of the functional equation

g
2 [ > AT+ 18, ]F(Z;e!B) =0, (56)
ecD? Lpg=1
where
F(z;e|B) = O%z + 1d + 4e|B)O *(z|B)

— 0%z + 4e|B)OYz + id|B). (57)

9, 4 is the Kronecker symbol (1 only if € = d, otherwise 0).
A,, and £2%% are given by (53) and (43), respectively. Equation
(55) will be satisfied, for example, if for each € #£0 (eeD?¥)

-4
> A4, 0201 18,,=0. (58)
pg=1
This system of 28 — 1 simultaneous equations determines
the set of glg + 1)/2 unknown “scalar produces” 4 * (since
A,, = A, and 227 = 2 ¥). The equation for € = 0 in (58)
drops out, since F(z;0|B) = 0.
For g = Oor 1 the system (58) always has a solution for
each symmetrical matrix B [satisfying (3)] if

det2774£0, (59)

since then 2 — 1 = g{g + 1)/2. In the case of g = 1, we ob-
tain the usual pendulum solution. For g = 2 we have the

two-periodic solution, which is more general than the com-
monly known solutions expressed by 4 arctan [ f(u)g(v)] + C.
This is due to the fact that fand g are the elliptic functions, so
that the above solution can always be transformed to a form
involving one-dimensional J-functions, whereas the two-di-
mensional ©-f allows the representation in terms of one-di-
mensional J-functions only in exceptional cases.® An equiv-

alence holds if B,, = B,,."?
In the case g > 2, the system of equations (58) is overde-

termined. This indicates the existence of additional condi-
tions on elements of matrix B, and/or constraints imposed
ond,,.

We intend to discuss these problems in a future paper.

Ifthe functions F (z;€|B ) (indexed by €) are linearly inde-
pendent, then condition (58) is sufficient for (51) to be the
solution of the sG equation (48). Otherwise, it is necessary to
find an appropriate set of linearly-independent functions
and to express F (z;e|B ) in terms of these functions.

In Appendix B we show that for fixed B, the set of
functions

(O +in+ 4vIB),. (60)
doubly indexed by the pair u, v € D%, form the set of linear-
ly-independent functions.

Writing (57) in a more suitable form,

F(ze|B)= Oz + i(d — €)|B)O*z|B)
— 6%z +1d + }d —€)|B)O*z + 1d|B), (6])
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one can now apply the formula (46). Observe that the second

term on the right-hand side of (61) is simply the first one,
!

F(z;e|B)=2"% %

8, v,umeD’

with the shifted argument z—z + id. Thus, after some rear-
rangement (61) becomes

O (i€’ £ 8) + In|4B)O (Y€’ + 8) + (v + 1 + m)|iB)

X (616 + u|iB) — O 15 + 4d — p)liB )16 (z + {v + {5]}B), (62)

or, if we apply (29),

F(z;e|B)=2"% % O} +8+v+p)iB)O v+ p)iB)

8,v,ueD8

X[O{§8 + JpliB) — O (15 + 4{d — n)[4B)10 (z + iv + 18[1B), (63)

where € = d — €. Since the & (z + v + 18|18 ) are now lin-
early independent, the functional equation (56) takes the
form of the algebraic system of 2% simultaneous nonhomo-
geneous equations (with respect to 4, )

g
S A7 £ 1000]
€eD* Lpg=1

€#d

X Y OUe +8+ -+ vIILB)O i+ VIB)
peDs

X [O (18 + JuliB) — O (45 + §d + p)[iB)]
=0, (64)

for each 8, veD®.
Since the last sum in (64) can be written also as

2 O + wiiBIO (i + B)|4B)

neD*®

X[O(8 + i+ v)|iB) — € (18 + 4d + v + n)[4B)), (65)

performing the summation over €, we finally obtain

S |3 nsrzioums)|ows + uis)

peD* Lpg=1
X[OUd + 4(n + V)[iB) — O (16 + §(d + v + pn)|4B)]
=0, (66)

for each pair pair 8, veD 8. We have denoted here

Er= 3 01, O +iiB). (67)
Z
[In principle, the summation is over all €', but the element for
€ == d vanishes, since F (z;0|B) = 0.]

We have thus far proved that the multidimensional sG
equation in the form (48) has the solution (51) if and only if
the system of simultaneous algebraic equations (66) is satis-
fied (for each 8,veD #). Relation (58] is the particular case of
{66) if the appropriate determinants in this equation do not
vanish. Similarly, one can analyze the other particular cases.

In general, the system of equations (66) is overdeter-
mined; it contains 2% equations for each pair v,  and there
are only g(g + 1)/2 variables 4, to be determined. We
should, however, bear in mind that g{g + 1)/2 complex ele-
ments of the symmetric matrix B must also be determined.

We have discussed the solution in the form (51), i.e.,
choosing C = 0 or 7 in the relation (50). These are the unique
values of C. The proof is given in Appendix A.
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! If there exists a solution of the system {66}, we have a g-

periodical solution of the sG equation. The dimension of the
physical space, e.g., 1 + 1, 2 + 1, etc., is hidden under the
scalar products 4,,,. Having 4, as the solution of (66), it is
necessary to find a,; or, better yet, the class a,; that fulfills
(53). This is an elementary algebraic problem, but the result
certainly depends on the assumed dimension of the physical
space: N + 1.

In consequence, we have obtained a g-periodic solution
in (N + 1)-dimensional space, which is then reminiscent of
the multidimensional g-soliton solution.

4. SUMMARY AND CONCLUSIONS

By deriving a variety of algebraic identities for the mul-
tidimensional theta function and for its derivatives, we ar-
rive at the conclusion that the sG equation can be reduced to
a functional equation and even to a system of simultaneous
algebraic equations.

Thus, the existence of a multidimensional solution of
the sG equation in form (51) involving theta functions de-
pends on the solvability of the system of algebraic equations.

The discussed solution represents a natural generaliza-
tion of the {1 + 1)-dimensional case. Moreover, the derived
relations give useful formulas for the determination of the
constants appearing also in the simplest (1 + 1)-dimensional
case.

A rather fascinating and deep resemblance occurs be-
tween the multisoliton and multiperiodic solutions of the sG
equation. This resemblance is of practical importance: the
methods of soliton theory are better developed whereas the
multiperiodic solutions concern the more typical physical
situations that arise in a bounded region.

Yet one also senses the essential differences, particular-
ly in the more-than-(1 + 1)-dimensional world.
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APPENDIX A

Below we prove that the constant C appearing in (50)
takes only two different values: 0 or #. Substituting (50) into

J. Zagrodzifiski 51



(55) we find

£
> H > A2 418,, cos C]F_(z;elB)
ecD¥

et
+%5€,d sin CF , (z;€|B )} =0, (A1)
where
F (z;€|B)
=60%z+ id + le|B)O(z|B)
+ 67z + le|B)O z+‘d[B (A2)

and the remaining symbols were defined previously. [4,, is
given by (53); 1227 by (43); d by (49)], F_ is equal, of course, to
the Fin relation (57). If (A1) holds for any g, it holds also for
z + Jd. But
F,(z+deB)= +

Thus we have

F, (z;¢|B). (A3)

> “ i A, 207+ 18, 4 cosC] B)
€cD*® P.g =4|

- %&E,dn(z;ew )] =0 (A4)
Adding (A1) and (A4) one obtains

(sin C)F (zd|B) = (AS)
If sin C #0, (AS) by (A2) ylelds

©%(z|B)= +iO%z + \d|B). (A6)

(A6) substituted into (50) reduces the whole solution to con-
stant. Therefore sin C = 0, and of course our choice of
C = (1 + 1)r/2 is justified.

APPENDIX B

According to A. I. Markuschevich,* a ©-f of range 7 is
defined as follows:

. A
0,[xlzd)= Y exp {nr(nm + x)-[2z + —(rm + x)”,
meZ* n
(BI)
where 4 i1s symmetrical matrix satisfying the condition (3), #

is a positive integer and y is a vector with integer compon-
ents y; and
Oy, <n, 1<igg. (B2)
By analogy to the previously introduced nomenclature, one
can write
XeD?, (B3)

which means y belongs to g-dimensional die of magnitude ».
(In this sense the die D ¥ used previously would be D¥.)
Markushevich states that for fixed g,4, and n, the set

{6.1x1(z4)},, xeD%, (B4)
in y forms the set of linearly-independent functions and the
total number of these functions is n®.

Let us consider 6 (z + {1/nje, |B ), where €,eD§. We
get

O(z+ %en |B)= > CXp{i#[ZS'(Z-{- %en)q—s-Bs]}

seZ X
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=2 X expll

X,€DE meZ¥

(z+——e )(mn+x,.)+(mﬂ+xn)

Bimn +x,)]) (B3)

where instead of the sum over s€Z ¢ we put s = nm + y,,,
meZ¥, x,eD¥. After simple rearrangements, (BS) becomes

> exp(i2me, X, /n)

XD

X > explim[2mn +x, )z + (mn + x, B (mn +x,)] |

meZx
= 2 expli2me,x,,/n)6, [x
x.€Dé

Thus Bz + (1/n)e
Since

» ) (znB). (B6)

. |B }isexpressed by a ©-fof range n.

8N expli2me(y — x')/n]

XD
8 n g
=n"*[[ X exp[2mely. —xi)/n] = I1s,.,
i=1e =0 =1
— 8y (B7)

the inverse matrix exists and hence the determinant of the
matrix exp(i27e+y, /n) in (B6) does not vanish. Therefore for
fixed n and B, the functions 6 (z + (1/n)e, |B) indexed by
€,€D?¢ are also linearly independent.

For example, if n = 2,

Oz +u|B), peDi;
ifn =24,
Oz +u|B), neDi, (B8)

are linearly independent, respectively.
But if peD§, putting p = 2v + nand vymeD 4, we
obtain

Oz + u|B)=06(z+ v+ nB) (B9)

and in conclusion the set @ (z + v + in|B), v,neD$ also
forms a set of linearly independent functions.
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The summation procedure of the Padé type is applied to the perturbation expansion of the
solution of the potential Korteweg-de-Vries equation (K.d.V.}, introduced by Rosales. For the V-
soliton solution without background the [(# — 1)/n] Padé approximants are shown to exist for
n<N. Their asymptotic behavior is investigated and it is found that it corresponds to a system of »
solitons with the leading velocity parameters. The analogous results for the K.d.V. then follow in

agreement with some previous numerical observations.

PACS numbers: 03.40.Kf, 02.30.Mv, 02.30.Lt

1. INTRODUCTION

Explicit multisoliton solutions are known for several
nonlinear partial differential equations. For the Korteweg—
de Vries (K.d.V.) and nonlinear cubic Schrodinger equation
the classical procedure for obtaining them is based on the
associated linear eigenvalue problems according to the pion-
eering works by Gardner, Green, Kruskal, and Miura' and
Zakharov and Shabat.? More generally, any initial value
problem is reduced to a linear problem.

A direct method for finding multisoliton solutions was
used by Hirota® and a systematic approach based on pertur-
bation expansions was proposed by Rosales.* For several
classical nonlinear equations explicit sums of the perturba-
tion series were obtained in the multisoliton case, while more
generally, the formal sums were shown to satisfy linear inte-
gral equations (such as the Marchenko equation for K.d.V.).
This method, in spite of some algebraic labor required by the
computation of the perturbation series, seems to be quite
general and suggests the investigation of systematic summa-
tion procedures.

The rational approximations of Padé type (P.A.) proved
to exhibit some interesting features for the potential K.d.V.
equation. In fact the {{(n-1}/n] reproduce exactly the N-soli-
ton solution for n = &,” and bound it from below for n < N.®
Moreover, numerical evidence was found that for n < N the
[(n — 1)/n] P.A. behaves asymptotically for t — + o asa
system of n solitons having the same parameters as the n
leading solitons of the exact solution.”® Even though the
numerical examples were restricted to very low values of N
and n, it was conjectured that the result would hold for any
value of N and n and also in presence of a background. Anal-
ogous numerical results were found for the modified K.d.V.

In this paper we rigorously prove the existence of
[(n — 1)/n] P. A. to a N>n soliton solution and the above
conjecture on their asymptotic behavior for the potential
K.d.V. equation. The method we use should allow exten-
sions to other nonlinear equations.

The plan of the work is the following. In Sec. 2 we re-
view the Rosales procedure. In Sec. 3 we prove the existence
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of the [(n — 1)/n] P. A. In Sec. 4 we describe the asymptotic
behavior of a multisoliton. In Sec. 5 we quote some prelimi-
nary results related to the asymptotic behavior of the

[(n — 1)/n] P.A. which is finally proved in Sec. 6.

2. KORTEWEG-DE VRIES EQUATION AND PADE
APPROXIMANTS

The standard form of the Korteweg—de Vries equation
is given by

u, + , + 6duu, =0, 2.1)
and letting u = — U, the potential K.d.V. equation reads
U +U,, —31U>*=0. (2.2)

The perturbation expansion of (2.2) can be written

o

U= 3 (—4]U,, (2:3)
n=20

where U, is a solution of the linear homogeneous equation

UO,: + UO,xxx = 0 (24)

and U, for n>>1 satisfy the linear inhomogeneous equations

n—1

Un,t + Un,xxx = 3 Z Uk,x Un~ 1 —kx (25)
k=0
Rosales* has shown that choosing the solution of (2.4) as
U, = f e T KNGk ), (2.6)

wheredu(k )is an appropriate measure on the complex plane,
then U, can be written

n+ 1

exp[[ Z (k; x + &k} 1)

j=1

U,,=z"‘J "
‘ I % +4.0

j=1

Xdu(k,) - dulk, , ) , onsl(27)

The usual multisoliton solution corresponds to a discrete
positive measure with support on the positive imaginary
axis, namely
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N

f flk)dutk) = S @ flik,).

I=1

(2.8)

The k; must all be distinct and we order them in a decreasing
sequence

ki>k,> - >ky . (2.9)
The coefficients of the perturbation series are then given by
U, ={¢,A"d), (2.10)

where (-,-) denotes the scalar product in R, ¢ is a vector of
R" defined by

¢, =a;exp[ —skix—vt)], vy, =k} j=1..,N

(2.11)
and A4 is a N X N matrix defined by
=20 i (2.12)
k, + k; '

The perturbation series can be summed for |4 | small enough
and analytically continued to give

U=(g[1+44]7'¢). (2.13)

Indeed, since the &; are all distinct 4 is a positive matrix. If
A >0, as we shall always assume, then U is bounded and
corresponds to a multisoliton solution.

Such a solution is a Stieltjes function of A for any value
of x and ¢; its poles have positive residues and lie on the real
negative axis of the A plane.’

As a consequence, by truncating the associated contin-
ued fraction one obtains two sequences of approximations
monotonically converging to the exact solution from below
and from above.

Such sequences are identical to the [(n — 1)/n] and [n/
n] Padé approximants (P.A.) and we write

[(n = 1)/n]yu, <UA ) [n/n]ya) » (2.14)

where the equal sign in (2.14) holds for > N. The behavior of
the poles of both the exact and the approximate solution was
investigated in Ref. 8; however, a rigorous proof of the exis-
tence of [(# — 1)/n] P.A. and of their asymptonic behavior
was missing. The [(n — 1)/n] P.A. is defined as the irreduci-
ble ratio, if it exists, of two polynomials P, (A )and 0, (1)
of degrees n — 1 and n, respectively,

such that
QAW —P,_,(A)=0A%). (2.16)

The [(n — 1)/n] P. A. exist according to the above definition
if the linear system associated to the normalized coefficients
of @, (4 ) [namely Q, (0) = 1] has a unique solution, that is

u, U .. U,_,
v, u, .. U,
. : £0., (2.17)
Un -1 Un UZn -2

An equivalent condition is the linear independence of the
vectors

$,44,...4" "¢, (2.18)

whose Gram determinant is given precisely by the Lh.s. of
(2.17). It is also useful to notice that the exact solution can be
written as

U=(¢¥), (2.19)
where
Y=¢ —AAY (2.20

and that the [(n — 1/n] P.A. are obtained by replacing the
exact solution of the linear equation (2.20) with the approxi-
mate solution ¢

[(n—1/n)y = ($0), (2.21)
where
U =¢ — APAPY (2.22)

and P is a projector into the n-dimensional subspace &,
spanned by the vectors (2.18). The proof is immediate if one
observes that { ¢,(1 + APAP)~'¢ ) isarational function in A
of the right order and that { ,(PAP)¢ ) = { $,4*¢ ) for
k=0,1,..., 2n — 1 imply the agreement of the Taylor series
of { ¢,¥) and { ¢,¥) up to order 2n — 1in A. Detailed proofs
of the above properties and further information about P. A.
can be found in Ref. 9.

3. EXISTENCE OF THE [(7 — 7)/n] P. A.

Following the definitions of the previous sections we
can state the basic existence result.
Theorem 1: The [(n — 1)/n] P. A. to the N-soliton solu-

P v tion exists and is unique for n<N provided that the
LA 2.15 d P
[n = 1)/nlow, = oA (2.15) (k... .ky | are all distinct.
" Proof: The result follows if we can prove that the vectors
1
i i i J '
1 ! ) ) '
' ' : | 28
! : | | :
A N N
1 \ 1 | H
AUEAUEA N
E i ‘: i FIG. 1.
Ll A W KK
i i [ T -
t [ ! : i
Y : Py
__¥,4:_‘r_, JI__ﬁ"._ 'I,_ Sy P g eopreyy=4
by oo
Lo | bl
\ : ! ! ‘ 'K
( ! ! I
v i ol D, >0 Q) <0
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(2.19) are linearly independent for n<X. Letting
p* =419, k=1,. (3.1

a sufficient condition for these vectors to be linearly indepen-
dent is that the determinant

’n’

pY . Bl
D,=|: : (3.2)
sy .. 4
J
o\ W 0
T o 0
¢(l"—m+1) ¢(n—m+l) 1
im) () — )
.0,, (y) ¢(n—m+2} ¢(n—lm+2 i ¢j¢j
1 n— - 1‘ y + kj
{m—1
B o - 46"
1 n— = y + kj
From (3.1) we have
¢ =Ap*" (3.4)
and taking (2.12) into account we can write
k-1
k) (3.5)
81/, = ,.21 s
It is immediate to check that
2 (y)=D,_, (3.6)
and
20k,)=D,/8, . 3.7)

In fact, accounting for (3.5) the last column of 2% (k,,) is
givenby 1,¢%/8,, ..., ¢ /4, . Since we have assumed D, _,
#0and since ¢, #0 the task of proving that D, 0 amounts
to proving that 2" (k,)#0 knowing that £ {)50.

The functions £2 ™ ( y) are for m>2 rational functions
of y; the degrees of the numerator and denominator polyno-
mials are not greater than N. The residues at the poles at

— k,,..., — ky are given by

lim 2 (y)y+k)=027"Vk,)d}

y— —k

I=1,.,N.
(3.8)

Indeed, after taking the limit in the Lh.s. of (3.8) we have a
determinant whose last column is precisely 0,...,0, ¢ 7,
&, 6%,....0, 64"~ ", where the zero appearsn — m + 1
times. After factoring ¢ 7 we obtain a determinant, whose
last column is 0,...,0,1,¢ ?/4,,..., 6 " ~ V/¢,, which is identi-
cal to £2'™ ~ Y (k,), as one can see from (3.3) and (3.5). It is
obvious thatif 2" = (k,) = 0 then the residue of the pole at
y = — k, vanishes, so that the degrees of the numerator and
denominator polynomials of £2 Y ( y) are at most N — 1.
We claim that 2 ( y) has at most m — 1 zeroson R, .
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does not vanish.

We use an inductive procedure. It is evident that
D, = ¢ ' = ¢, never vanishes (for any finite values of x and
t). Assuming that D, _, #0 for 1<n<N we shall prove that
D, #0.

Let us consider the functions £2 ™ (y) defined by

(3.3)

r

This result also can be proved by induction. In fact form = 2
all the residues are of equal sign since from (3.8) and (3.6) the
residueaty = —k, for/=1,..,Nis givenby ¢ ; D, _, #O0.
As a consequence, on R, £2'? ( y) has at most one zero [none
if 2®(0)D, _, >0] (see Fig. 1). Assuming that 2"~ ( y)
has at most m — 2 zeros on R, we can then prove that
2" (y) has at most m — 1 zeros on R, . A preliminary re-
mark is that £ " ( y) cannot vanish identically since all of its
N residues cannot be zero. The residues for (3.8) are propor-
tional to 2™~V (k,) and at least N — (m — 2)>»2 of them are
different from zero since m<n<N. Let us consider the case
in whichno one of the { k } isazeroof 2"~ " ( y) and let, of
them ky,..., ky_, ,, fall between O and the first zero of
027 =1(y), j, of them fall between the first two zeros of
02'"~Y(y),andfinallyj,, _, of them fall after the last zero of

£~ (y). The poles corresponding to the same group of
{k | (for example — ky, —ky_,,....., — kn_j +1) have,
due to (3.8), residues of equal sign and at least one zero has to
lie between each pair. Therefore to j, poles there correspond
at least j, — 1 zeros. Two contiguous poles not belonging to
the same group have opposite residues and an even number
of zeros or none can fall between them. As a consequence a
lower bound to the number N _ of zeros in R_ of 2™ ( y) is
given by

m—1

N>S (i—)=N-m+1.

I=1
We conclude that the number N of zeros in R, is given by

N,=N—N_<m—1. (3.10)

If pofthe {k } are zeros of 22 " ~ ! ( y) the estimate (3.10) still
holds since £2 ™ ( y}is then a rational fraction of order N — p
and one has simply to replace N by N — p in (3.9) and (3.10).
In Fig. 2 we illustrate the behavior of 2 ( y) when p = 0.

(3.9)
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We can now end our proof since we know that £2 ( y)
will have at most n — 1 zeros on R, . Moreover, 2" (k,) = 0
for! = 1,...,n — 1 since the elements of the last column are 1,
é'?/é,,..., 6"~ /4,, identical to the / th column up to the
factor 1/¢,. We can argue that 2 "(k,, ) #0. However due to
(3.7) this implies that D, #0 and our induction is complete.

4. ASYMPTOTICS OF THE EXACT SOLUTION

In order to investigate the asymptotic behavior of the
multisoliton solution one cannot simply take the limit of
U (x,t)for t — oo, but must rather follow the signal by mov-
ing with a given speed v and look at this picture for very large
times. The collection of these pictures for different values of
v will give a complete description of the multisoliton asymp-
totic state which can be visualized as a superposition of indi-
vidual solitons.

Let us first recall that the single soliton solution, given
by (2.13) for N = 1, reads

$ilxt)
14+ (A72k)) 61 (xt)
_ 2k, /A
T 1+ explk,(x —vt)+ 28]
where § is given by
5=41n [2k,/Ad’] . (4.2)

By differentiating one recovers the actual soliton solution of
K.d.V. and identifies § with the phase factor. Indeed one
obtains

Ulx,t) =

(4.1)

a
vix,t) = ——Ulx,t
(x,2) e (x.2)
k 2
_5, 1 . (4.3)
24 cosh’[ | ky(x —v,t) + 6]
Let us move along with velocity v; namely, choose
x = vt + £ and consider the limit for ¢ — oo
U (&)= lim Upt+§.t). (4.4)
I— + o

In the case of a single soliton U_ ( £ ) follows from (4.1) and
reads

FIG. 2.
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0 U>U,
U.(§)=1U(£0) v=uv,
2k/A v<w,

(4.5)
In order to investigate the N-soliton behavior we distinguish
four different regions v> vy, v,, ; <v<v,v =v,, andv <v,.
In fact, we first observe that
$i=¢lvt + £t)=4,(£,0)exp[ L kv, —v)t ] (4.6)
and that

0 V>
im ¢ =14(60) v=u,
00 U<y,

(4.7)

Theasymptoticbehaviorof U (vt + &t )fort — + oo is given
by

Uw(g)zl lim U+ &)

(O v>D,
2 I
= j;} k; V1 <V
— 2 [—1 2k /A
4 - z kj + d V=1
A &= 1 +exp[k, £+ 25,]
2 N K
i ) vy
L/{ j;l J < N ’
(4.8)
where 8, is defined by
S 1
2k k, +k
1 Alkl 1 l+ j
5, =—1 > ; 4, = :
2 Aaj 4, 1 1
ky+k; E
A4,=1
(4.9)

From (4.8) we understand that the N-soliton solution is as-
ymptotically a superposition of N free solitons, whose
phases, however, are modified, as one can see by comparing
{4.9) with (4.2). In view of the study of the asymptotics and in
order to set some basic notations, we carry out a proof of
{4.8), which was first obtained by Zackarov.'?

A.v>vy,

In this case ¢, — O forj = 1,...,NV and from (2.12) and
(2.13) we see that U = 0.

B.v,,,<v<y

We need to write the equations (2.19), (2.20), equivalent
to (2.13), in a different form, since neither ¢ nor 4 has alimit
forz — + oo. Let us define the N X N matrices I',B and the
vectors /, 77 according to

1 .
F.. = Q; 6[" B‘.. = y I j = 1,...,N
v =0y By k; +k; / (4.10)
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and
e,=1 i=1.,Nyp=r. (4.11)

After noticing that 4 = I'BI" and that ¢ = I'e one can re-
place (2.19) by

U= (e,n) (4.12)
and (2.20) by
e=(C"24+AB)y. (4.13)

Since the ¢; have different behaviors according toj</orj > [
we introduce the diagonal matrices I”, and I”_ according to

(4.14)

Sothat I'=I_, I'_~"'and Eq. (4.13) can be written
I’ e=(I'> +Ar'*, B)y.
Denoting that 17, the projector defined by

(4.15)

¢!

-1
-1

sothat ' >=TI 7*I'* 4 I'}. Since the asymptotic limit
of I', and I"_ is the same as is the previous case, 7, which
satisfies the equation

I* e=[I'* +I? I'}+Ary, Bl (4.22)
has a limit of 9, for t — + . It is easy to verify that

I-M)n, =0l e=I[I+AB] 1,9, .
(4.23)
As a consequence, letting C ~ (/) be a matrix such that

I c-'\ymr:+iBs I, =1, , (4.24)
one obtains
U, =Aen )= (Ile,C~Y) He). (4.25)

Using the results of the Appendix one finds that (4.25)is in
agreement with (4.8).
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8

0 otherwise

g i<

(IT)), = [ (4.16)

Weobservethat ", —I1,,I"_ — (1 — II,}fort - + oo.It
is easy to check that the limit 7 of 7 for t — + < exists

since the limits of 71,  and (1 — I1,)n both exist. Taking the
limit of (4.15) for t — + oo, we obtain

Me=(1-1l,)y  +AIlLBy_ , (4.17)
which imples
(11—, =0, IMe=AIIBIl 7 _ . (4.18)

Letting B ~'(/) be a matrix whose first principal minor of
order / is the inverse of the first principal minor of order / of
B, namely,

11,B ~\)I, BIl, =11, (4.19)

one can express the solution of the second equation in {4.18)
and finally obtain

U, =(e1 =)y )+ (edl,n_)

= (1/4)(IL,e,B ~'(I) IT, e) (4.20)

By using the results of Appendix A the last scalar product
can be explicity evaluated in agreement with (4.8).

C.v=y,

In this case ¢, is independent of ¢ and we introduce the diag-
onal matrices /", according to (4.14), I"_ and I'; according
to

(4.21)

D.v<v,.

In this case all the ¢, diverge fort — + oo sothat " ~2 — 0.
As a consequence, Eq. (4.13) defines the limit 7

e=ABy_ (4.26)
and U_ is given by
1
v, = 71-<e,B “le), (4.27)

still in agreement with (4.8).
5. PRELIMINARY RESULTS FOR THE P. A.
ASYMPTOTICS

In order to investigate the asymptotic behavior of
[(n — 1)/n]y fort — + o we replace (2.21) and (2.22) by

ln—1)/n]y = (eB), (5.1)
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where ) = I ;// satisfies the equation

e=(C "2+ ATBT *)j. (5.2)
The matrix T is defined by

T=r-'pr (5.3)
and enjoys the following properties:

T*=T, Te=e. (5.4)

As we did previously for the exact solution we evaluate the
P.A. for x = vt + £ and we consider the behavior for fixed &
and large t.

Theorem 2: The vector 7 satisfies T *# = 7 and is uni-
formly bounded for any finite z.

Proof. From (5.2) and (5.4) we obtain

e=(TT" "2+ ATBT *)f=( ~2+ ATBT *\T *#,
(5.5)

and subtracting from (5.2)
(F~*+ATBT *)\# —T*#)=0. (5.6)

Since I" =2 + ATBT * is, for any finite ¢, positive definite and
therefore invertible, (5.6) implies that T * % = 4.

In order to prove the other property we remark that for
any finite £, using the Schwartz inequality, (5.2) and
T *# = 1) we have

I7ltllell> [<e, )| = (A" ~% + AB }ip)
>AuBH|*, (5.7)
where u,[ - ] denotes the smallest eigenvalue of a symmetric

matrix and the inequality uo[I" ~? + AB 1> Au [B ] follows
from the Rayleigh-Ritz principle. As a consequence

llell  _ fellllB "]
Atto[B ] 2

Iall< Q.ED. (5.8)

The next step towards the P. A. asymptotics is the asympto-

J

UV <V = {¢j>*¢j+2’ N

The reordering of the ¢ obviously can change by changing v.

B. Changes of basis

tic behavior of T that will be stated by Theorem 4. All the
results ranging from Eq. (5.12) to (5.48) prepare the proof of
this Theorem and could be skipped in a quick reading.

A. Ordering of ¢,

The asymptotic limit of [(» — 1)/n] ;, can be performed
if we know the behavior of Pand T for large ¢. For this
purpose the basis (2.19) on which P projects must be ortho-
normalized. The first step, however, is the ordering of the ¢,
for v fixed and ¢ large. This behavior is determined, accord-
ing to (4.6) by the arguments k;(v; — v).

Letting

S =y —v), (5.9)

we see that for ¢ large enough

16> fik)=> tim %

i

=0

Sl = fl) = % = const
(5.10)

When the first condition in (5.10) occurs we shall also use the
notation ¢; > *¢, while the second will be denoted by ¢, ~ ¢, .
Since the function (5.9) is monotonic increasing for y > (v)'/?
thenifk, >k, > -+ >ky > (v)"/* the sequence of ¢; is ordered
$1>*¢>* .. >* by

When k, > k,> - >k, >)'"*> k;, | >+ >ky, the
first / of the ¢ are ordered; the remaining are not.

However we can relabel the k; for j > / so that ¢, are
ordered according to ¢, > *@, > * - > *¢, > *¢, , |
S*b 25" S ¥y After ¢, , , the occurrence of two ¢
with the same behavior is not excluded. However, there can
be at most two ¢ with the same behavior since there are only
two points in the interval ]0,(v)'/?[ at which f( y) can assume
the same value. Therefore, after reordering the ¢ one must
have ¢, > * ¢, , forj> I Finally if (v)'/*> ky all the k must
relabeled if we wish to order the ¢. To conclude, we write

¢‘>‘¢2>."'>‘¢1>‘¢1+l5‘¢l+25*'" >*dy,

(5.11)

Let us define an array n X N formed with the components of the vectors ¢ for i = 1,...,n, and denote it by X

$0 - BY
Xx=||: ;
T T

(5.12)

Let us denote by X '#, for 1< p<n, the matrix n X N formed by vectors ¢ “»i = 1,...,n, obtained by linear combinations of
the original vectors ¢ " i = 1,...,n, such that X! = §, for i = 1,...,p, j = ,...,p. In extended form we write
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(pl’+p)1 v
1 @ :
X'o = LP;Pl’ i .
¢(1p+l.p) ¢Lp+l.p) ¢Lp++ll-p) ¢l}5+1,pl {5'13)
¢ llsn.p) ¢ Ln P ¢ i,’l.pll ¢ (]Ecvp)
I

The recursion algorithm from X ~ " to X {# explicitly reads

—1
o' = ¢(pp~1b 2 ¢(i,p—1)¢£p,p—1),

i=1
¢ (pph — oyl pb/w;’p)
¢ 6P — ¢ bp—1j ¢ (p.p)¢gvp— l7’ i= 1,”_,p -1,
¢(tpl ¢('P~1) i>p+ 1.
(5.14)

For convenience we shall also denote X by X ® and ¢
by ¢ “°. Let D'# (1,..., p; j1.-., ] ,) be the determinant of the
minor of order p of X '*) formed by the first p rows and the

columns j,,..., j, and let D (1,..., p; jy,..., j ;) be the corre-
sponding determinant for X, that is,

P e
D (1,.cp; j1seesJ p) =

¢(pb j‘.;”
(5.15)

Since X {# is obtained from X '7 ~ ! by linear combinations of
its rows and by dividing the pth row by 7 it is evident by
recursion that D' (1,..., p; /..., j,) willbe equal to D (1,..., p;
J1serd,) divided by IIZ_ , @!. The last product is different
from zero. Indeed, by comparing (3.2) and {5.15), Theorem 1
statesthat D (1,..., p; 1,..., p) 50, while from the definitions of
X'# and D'? it follows that D '# (1,..., p; 1,..., p} = 1 so that

P
[] @ =D (1,0 p; 1,... )0 . (5.16)

i=1

Therefore we can write

D (L D jiss f )

DB, Difiyen] o) = 5.17
(b i) = (317
and notice that the following relation holds:
¢1pp) D“”(l, Wb 1 yeors P — 1,j)
CDlhepilep=t gy
D(l rpa N ,p—l,p)
(5.18)

The basic strategy to obtain an asymptotic estimate of ¢ {*?
for i = 1,...,N is the following. First we establish a recursion
relation relating the D of order p to the D of order p — 1.
Then we can estimate the ratios of D, appearing in the r.h.s.
of (5.18) in terms of the ¢, only, for ¢ large, and obtain the
required behavior of ¢ |#*. Through the third of the relations
(5.14) we then obtain the estimate on the ¢ “*# for

i=1,..., p — 1. A Gram-Schmidt orthogonalization will
change the final basis given by ¢ ", i = 1,...,n, to a new basis
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7, i = 1,...,n, for which the asymptotic estimates can be giv-
en. Finally the asymptotic structure of P and T are deter-
mined. For the next developments we need to define the de-
terminant of order p K (ry,...,7, _ 1; J1s--, j, ) according to

1 1
1 e 1
. . k’[ + k i k’| + k
K(r]’-“)rp— i ;.]l)"".]p) = . ! : "
1 -
k’p ) +k_/| k"p 1 +kjp

{5.19)

Lemma I: The determinants D of orderspandp — 1 are
related by

D (1,..-, p;jp-"!jp)
— ¢j| . ¢jp z ¢;] o ¢?,,71

= = N
[PrensTp th

XD(,.,p— 1;;11"";p 1K (7. p‘l:]n ’jp)

(5.20)
where {7,,...,7, _, }1 is an ordered set of p — 1 natural
numbers, all distinct, chosen among 1,2,...,N and the sum
runs over all possible such sets.

Proof: We first observe that from {2.12) and (3.1)
. N b o _
0 — LI pli-n 5.21
i Z kj + k, ¢ r ( )

r=1

From the definition of determinant one can write

D(1,...p; jys-- ,j,,)
Z Z ¢, 0,678, S
r=1 rp=1 Tt To
é; ¢;
X (= 1), —= ... I
’Sl’gp]‘l, . kj:, + k’l kj:,, + k"p—l

(5.22)
where {s,,...,5, }{ is a permutation of 1,...,p and Pis its parity.
Accounting for ; ¢, &, =9, &, 4, and for (5.19)
we have

D (Lo firosJy)
-5~ 3 8,818, 87 0, BT

=1 pl~

X @ by, &y, K(Prelp 15100 Jp) -
{5.23)
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We notice that the terms of the sum in which two or more of
theintegersr,,...,r, | areequal, vanish since in this case the
determinant X has two equal rows. Therefore we can write a
sum over the distinct combinations of ordered p — 1 integers
{Fi,-F,_ 1 |1 out of 1,...,N and a sum over all possible per-
mutations {7,,...,7, _,|Fy,...,7, _ } of ,...,F, _,.Letting Pbe
the parity of this permutation we con51der the identity

K (it y 5 Jrmeerdy) = (= VWK (FryeiiFy_ 1 J1sen Jy) 8O
that we can write

D (Lo, Py fryesfp) = &, = &,

'

X z K(rl’ rpvhjl’ ’jp)‘

ity 1
X Z (_ 1)P¢rI ¢r1 o ¢rp \
(S S
X¢'“¢ 2, ¢(rp— 1)
=¢; ¢,- Z ¢;‘ ...¢;P ‘
[Froey 137
XD(L..,p—1Lr,.F_ ) K({F,.., Fo13d1esdn) s
(5.24)
where we used the identity
¢, ¢,  =¢, ~d . QED. (5.25)

Lemma 2: For the determinants D the following esti-
mates hold for ¢ large enough:

b 8 _ AP (b Py

" ¢4,  |D(1,p; L,y pl|
<M, —— B s '
p ¢‘ .-‘¢p (5 26]

where M, and m,, converge to the same limit for  — + 0.
More precisely one can write
m, =C, ———

1+ep
l1—e¢, z "l+e,

1 —¢
M,=C, L

(5.27)
where C, is a constant and €, goes to zero with# — + oo as

b /¢p71 1f¢ 1> ¢p’asa¢p71/¢p72 +B¢p+l
¢p71 if ¢, | ~¢,. In addition one has m; =M, = 1,
€, =0.

Proof- We use an inductive argument. The result is ob-
vious for p = 1sinceD (1, j) = ¢;. Assuming that (5.26) holds
for p — 1 we use the result of Lemma 1, separating in the sum
the leading term from the remainder. If ¢, | > * ¢, there is
just one leading term which we denote by 4 (j,,..., j, ), while
the remainder is B (/,,..., j,), namely

D (L, Pifryis) = &5, - &,
X [A(Jiseeosdp) + BJ1resJp)] »

(5.28)
where
A(jyndy)=¢ ¢, D(L..,p—11,.,p— 1)
XK (L p— 1 1 jp) (5.29)
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and

B (j]”"’jp) = 2 ¢?, ot
m”#u ----- p—1
-1 Fraweshp 1)

pAl!.]li 7jp)'

(P
xD(1,.

><K(r‘, (5.30)

As a consequence, using (5.26) for p — 1, we have
1B (j1s-s /)|
’A (jly--'!jp)| S )rl Fa AV E (L p— 1
gn K7y p~h.]l7 s do )l
62 42 K{Lowp— Ljpoiy)l

(5.31)
p—1 ¢
et
P N P ¢ : ., P
where by y, we denote the largest of the ratios of K after
noticing that the denominator is nonzero (see Appendix B).
We conclude that (5.26) holds where

|K(1,,p - l;jl,‘"’jp}l

C, = .
K (1,..,p — 15 1,.., p)|
(5.32)
If ¢,_, ~¢, we have two leading terms in the r.h.s. of (5.20)
namely, ¢, ¢, _, ¢,_, and ¢, - ¢,_, ¢,. As aconse-

quence, we have to go one step further and use (5.20) twice in
order to write D (1,...,p;j1,...,jp) as a sum of

D(1,....p — 2}¥,,...,F, _,). Of course this case can occur only
for p>3. If p = 2 then the factors of the equivalent leading
terms are constants and one does not need to go one step
further. Let us denote by 4 (/,..., j,) the leading term and by
By(jiseesdp)s Bal jires J,) two remainders according to

D(L,s PijiresJp) = 85 @,
X [A i)+ BaldiseesJip) + Baldisees Jp )] »

(5.33)
where
4 (jl""’jp) =¢% ¢,2>—2 ¢,2;7 1 ¢1 ¢p——2
xD(l,..,p—2;1,.,p—12)
x4 (l,..,p— 2;jl,...,jp)
(5.34)
and
Bl(jl"“’jp) = ¢% ,2» 1 ¢,2:71
[FrerPp 2}t #{Lop — 21
X¢?. ¢.,P72 D(l,.,p—2; ?1,...;’,,_2)
X4 (?1,...,7“,;2;],,..._]',,) (5.35)
and
. 2 2
Bo{jiserdp) Z 7 oo
[# -y;‘p_ll?’
#{L,p—2.p— 1}
“£{l..,p—2,p}
X 2 o5 - ¢s,, s D(1,..,p—2; 5. p—2)
I
XK (§15e00s8p 23T 19005t p — )K(r’ 1:.]1: ’j )
( 1 p—2°"1 p 1 1 P (5.36)
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The constants 4 are defined by

A Fypeesty_ 250 100rdy) = K(Frsees?y 55 Ly p—2,p— 1)
XK (L p—2p — L1y j,)

7

2
p—1

XK(I,...,P - 29p;jl!"')jp)’

+

K(;I)'",;‘p_ 2;1,...,[7 —_ 2,p)

(5.37)

where the ratio ¢,/4, _, is independent of t since ¢, _, ~¢,
and the coefficient of the leading term 4 (1,..., p — 2; j},... j,)
is different from zero as shown in Appendix B. Using (5.26)
for p — 2 we have

Bjiyes]
| 1(].1 .{p)| <Mp_
|4 (Fisees Jp)]

2 @2 A FreFy 251 o)l

¢t g2, ALy p =251 )]

p—2
<M"—Z( N >X

2
[P - 2J1 # [ L p— 2}

2
(n¢P—1 =l
4 2 P
¢p—2

(5.38)

where y | is the largest of the ratios of 4 occuring in the sum.
For the ratio |B,/A4 | we obtain

'BZ(jl""’jp)|< ¢%. ¢§, '
. . > p—2 — .
|4 (]]""’jp)’ (FroesFp_ 1 }Y ¢¥ ,27_1
#ilp—2,p—1j
#{1,.., P?—2,pi
2 L2
X 2 3y Sp—2
{Brs i,,zl’,v¢%"' ;vz

K (SyyeeeSy _ 23 FaseessFy - JK (FayeessFo 1 Jiseeen )|

1A (Leees p = 25 iy Jy )|

p—N\(p—-2 @ 121+1_ 2)
(0303 )s FYR

(5.39)

where y 7 is the largest of the ratios of K and 4 occurring in
the sum. Finally, (5.27) is recovered with €, = ¢! + € and

_ |A (1,,p —_ 2,]|’yjp)|
LA, p—21,..p)

We can now quote the basic result stating the following
theorem.

Theorem 3: The asymptotic behavior of the vectors
# ' whose components define the matrix X ? is given by

(5.40)

P =0(8;/8,), p<J<N, i<p<n.
(5.41)
Proof: For i = p, using (5.18) and the results of Lemma
2, the estimate (5.41) is satisfied. For / < p we use the third
equation of (5.14) and an inductive argument. Indeed, for
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p = 1 the relation (5.41) is trivially verified since ¢ """
= ¢,/$, by construction. Assuming the relation valid for
p — 1 we have

¢y’,m — ¢jt}',p— 1 _ ¢}p,p)¢g.p— 1)
=0(¢,/¢:)+0(¢,/¢,)0(4,/¢))

=0(¢;/¢:), i<p—1,j>p. (5.42)

C. The orthogonal basis

The orthogonalization procedure is applied to the final
set of vectors ¢ ™ for which we can write when ¢ is large, see
(5.13) and (5.41),

[018/8) isn
si={""

i

) i<n. (5.43)
Jj<n
Letting 7" be the orthogonal vectors, we can obtain them by
using the Gram-Schmidt recursive procedure

i—1

=gl S (g i =1, n, (5.44)
=1
where 7!’ are the normalized vectors
= /|0 (5.45)

The asymptotic behavior of 7 is easily computed from (5.43)
and one has to distinguish four different regions

O(¢72|+1/¢i¢j) Jj<i, I
1 j=1, 1I
- , _ .
! 0 i<j<n, I (5.46)
0(¢j/¢i) n<j<N, IV

In addition the norm of 7! has the following estimate:
7P =1+0(87,1/¢7). (5.47)

We are in a position now to specify the asymptotic structure
of the matrix T defined by (5.3). We can also write

T= S Tlp),
P2
where

TiP=¢, A0 dn g, 7). (548

Theorem 4: The matrix 7" has the following asymptotic
structure:

T=I,+(1—1I1,)ZI, + & (5.49)
ifd, >*@,, ,, thatis, d, /¢, —O0fort— + o;
T=1I, ,+(1—1,_)ZI,,, +% (5.50)

ifg, ~¢, ., ., thatis, ¢,/4, , , is independent of . The ma-
trix Z is bounded while any & ; is exponentially small for
t— + oo.

Proof: In order to estimate the matrix elements T\ we
have to distinguish 16 possibilities according to the region to
which the couples of indices ( p,i), ( p, j) belong [see (5.46)].
Then it is not hard to check that
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[I-1] i<p, j<p
(I-11] i<p, j=p
[I-I11] i<p, p<j<n
(I-1V] i<p, n<j<N
(II-1] i=p, j<p
[1I-111] i=p, p<j<n
[11-1V] i=p, n< j<N

ITII-1],[T1L,IT
[ L ] p<i<n, 1<j<N

[OLIII],[IIL,IV]

[IV-I] n<i<h, j<p
[IV-II] n<i<hN, j=p
[TV-III] n<i<N, p<j<n
[IV-1V] n<i<N, n< j<N

T‘,f'=0( “)
é:
T‘,-j‘”—O
T(jp) _0(¢i+1 ¢12)
E 2 42
N
T&,")=o( "*‘)
42 )
T(--p]=1+0(¢n+l>
y ¢2
P
T =0
2
ngplzo(ﬁ)
5
T',.J."’:O
2
T(ijp)=0< n+l)
5
TP =0(1)
T‘,f’:O

re-ofl)
é; (5.51)

We remark that in the above expressions if ¢, > * #, , | then all the terms are exponentially small for ¢ large except for [I1,1I]
and [IV,1I]. When ¢, ~¢, , , we have T’ = O(1) in the regions [IL1I], [ILII], and [ILIV], [IV,IV] only forj =n + 1.

6. ASYMPTOTIC LIMIT OF THE [(n — 7)/nn] P.A.

The asymptotic limit for t — o« of the [(n — 1)/n] P.A. to the N-soliton solution for n<N is given by

[0

lim [(n — 1)/n]y =4 2k, /A

{— oo

2

AL 1 +exp[k, §+26,]
i n

A

where &, is defined by (4.9). One can easily recognize that
asymptotically the [(n — 1)/n], is given by an ensemble of »
free solitons whose parameters are k, > k,> ... >k,, the
same as the n leading solitons of the exact solution. We shall
give a distinct proof of the limit in each of the above regions.

A.v>y,
In this case it is sufficient to recall the inequality
0<[(n — 1)/n]y,<U (6.2)

valid for any finite # and to use (4.8) to show that the P.A.
converges to zero when t — + «

B.v,,,<v<vy, I<n

In this case both ¢, >* ¢, , and ¢, ~¢, . , are allowed.
However, from (5.49) and {5.50) the following relations are
obtained:
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v>D,
v, <v<y I<n
(6.1)
v=y, I<n
V<,
{
anl Tznnﬁl +”n*1g;
T(l_”n+1)=g(l_”n+1)~
(6.3}

We define I", and I"_ according to (4.14) and observe that
r: =m+01-n)¢_ ;r*> =(1-1,)+ 1% _,
{6.4)

where || & _ || and ||& _|| are exponentially small for large ¢.
The basic equation (5.2) then reads

r: e=[r* +r?* ATB]4. (6.5)
Acting with (1 — /7,) on (6.5) we obtain the equation
(1— )i =(1—11)% , (e — ATB#], (6.6)

which shows that ||(1 — 7,) 7|| is exponentially small for
large ¢ since both T and # are uniformly bounded according
to Theorems 2 and 4.
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Acting with /7, on Eq. (6.5) and accounting for (6.3),
(6.6), and IT, II, _ |, = IT,, we have

He=AllBIl, #+p, (6.7)
where p is a remainder defined by
p=AILB1 )7+ 1T(§_+A€B)j, (6.8)

and its norm || p|| is exponentially small with . As a conse-
quence, using the same symbols as in Sec. 4, we finally obtain

[(n — 1)/n],, =% (Me.B (), +7,

where r is exponentially small with ¢.

(6.9)

C.v=v,iIkn

We introduce the matrices I"_ and I, according to
(4.21), that is,

r: =(01-m)+m, ,%_;
o=l ~1I,_,)¢ 7 £0). (6.10)

If/<nthenboth¢,>*¢,, , and g, ~9, ., can occur
while for / = n the second is excluded. As a consequence in
both cases we have

n, 7=+ . (6.11)
Letting I”, still be defined by (6.4) the basic equation (5.2)
now reads

) e=|[I'~ +TI* rj+r? ATB)j. (6.12)

Applying 1T, and 1 — 11, respectively to the last equation we
finally have

N-H)75=(01~-H)€ | —ATBH) +e] (6.13)
and

Me=1A+ T3 7 4p, (6.14)
where p is given by (6.8). The P.A. then reads

[(n—1)/n)l, = HeC \)Te) +r, (6.15)

where C (/) is defined by (4.24) and is in agreement with (6.1)

D.v<v,
In this case ¢, > * ¢, ., and from (5.49) we obtain
nr=n,+10,%,7T1-1,)=¢(1-11,). (6.16)
Using the second equation of (6.16) and Theoremni 2 we have
M-O)p=1-O,)T* *H=(1-1,&*9. (6.17)
We observe that 7 still satisfies Eq. (6.5) where for v, ,
<V < v, with />n the matrices /" and I"_ are given by (6.4)
while for v = v, with /> n, I"_ does not change and I"_ is
given by
r’ =(1—M,_)+{l,—M,_,)¢$ {0+ M,_, &_
(6.18)
By applying /7, to Eq. (6.5) one obtains in each case
Me=All, BIT, % +p, (6.19)
where p is a remainder given by (6.8) where /is replaced by n.
From (6.19) we finally obtain

[l = /)y = <(T,e.B ~"n) ) + 1,
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where r is exponentially small with 7.

7. CONCLUSIONS

The asymptotic behavior of the [# — 1/n] P.A. to the
multisoliton solution for the potential K.d.V. does not seem
to be an isolated accident. In fact the structure of exact
multisoliton solutions and of the related perturbation series
for other equations (modified K.d.V., cubic Schrodinger)
would suggest that most of the arguments used here can be
extended. For the actual solution of K.d.V. corresponding
asymptotic statements could be obtained that are physically
quite reasonable. In fact the summation method we propose
extracts from a finite number of terms a nonperturbative
feature of the solution, as the solitons are.

An important and yet unsolved question concerns the
persistence of the described asymptotic behavior also in
presence of a background. We hope an answer will be given
in spite of the nontrivial mathematical difficulties.

APPENDIX A
Let B, K, E, be | X I matrices defined by
1 ..
B, = . +k-; Ki=ki o E;=110j=1,.,]

' J

(A1)

and e be the vector of R defined by e; = 1fori = 1,...,/. We
can prove that the following relation is satisfied:

(e, B~ le)=T,(B'E)=2 i k; . (A2)

=1
Indeed if we observe that
BK + KB =E, {A3)

then Tr(B ~'E) = 2 Tr(K ) follows. Let C be the / X / matrix
defined by

Cy=AB; +¢, (606,68, (A4)

where ¢ ;% ( £,0) = a; * exp(k, £ ) in agreement with (2.11).
The following relation holds

(e,C ~'e) = Tr(C " 'E)

-1 2k, /A
= i 2 kj + ! ’

A = 1 +exp[k; §+25,]
AS)

where §, is defined by (4.9). In fact we observe that
KC+CK=AE+ @, (A6)

where

¢lj = 2k1 ¢ 142 { 5’0)5,‘1 5,1 . (A7)

As a consequence we have
ATIC'E)= 2Tr(K) — Tr(C ~' &)

=23 ki —2k ¢, (E0(C ),

j=1

(A8)
so that accounting for
4,_
(C ‘l)u = _12 - ’
A4, + ¢, °(£0M4,
(A9)
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FIG. 3.

where 4, is defined by (4.9), after simple algebra (A5) is ob-
tained.

APPENDIX B
We show that the following relations are satisfied:

KLy p— L j1ens jp) 0 K (L,.c0y p — 2, P3 f1see ) #0

(B1)
It suffices to consider the function
1 |
k,+k, ki +k,
A=l
k,_2+k, kp_2tk,
1 ) 1
y+k,; y+k,
(B2)

and to remark that it is a rational fraction [{ p — 2)/ p)]. In
fact by expanding the determinant on the last row one would
find a rational fraction [( p — 1)/ p]; however the numerator
is indeed of order p — 2 since one verifies that

lim yA(y)=0. (B3)

y—r o

The p — 2 zeros are at k,,k,,...,k, _, and one has

Atk, }=K(l,...,p— 1;j,,...,j!,);
Alk,)=K(Lup = 2,8, J15 1) (B4)
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Then (B1) follows provided that A ( y) is not identically zero;
this occurrence can be excluded since the residue of A { y) at
y= —k; isgivenby K (1,..,p — 2;j,..., j, ;) and the in-
duction argument applies since K (1, j,) = 1.

Next we observe thatif ¢, | ~¢, then, see also Fig. 3,
it is evident that k,,...,kp _, are external to the interval
[k, _ 1, k,];asaconsequence A ( p) must have the same sign

throughout the interval itself and one has

sign[K(l,...,p = Ljnend,)]
=sign{K(L,..,p—2,p; ji,0n Jp) ]
We then consider the function £2 ( y} defined by

1 1 1
1 ! !
2k ki +k,_ ky +
ap=| e
. 1 1
k, ., +k, 2k, , k, ,+y

(B3)

which is rational of type [( p — 2)/( p — 2)] and vanishes for
k,k,,....k, _, . Using the previous arguments one concludes
that

K(l.,p—21,..,p—2,p— 1)5£0;

andifé, , ~¢,,namely, k;,k,,....k, _, donot belong to the
interval (k, _ | ,k,],

signfK (1,...,p—2; L., p—2,p — 1)]

=sign[K (1,....p — 2; 1,..,p — 2, p)] . (B7)
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We develop here the calculus of twisted tensors and in particular twisted differential forms,
treating them as tensors with complementary orientations. These geometrical objects give us the
proper language for electromagnetic theory in a 3-space plus time representation. The parity
properties of the fields are simplified and many graphical illustrations are given.

PACS numbers: 03.50.De, 02.40. + m, 04.90. + ¢

The student’s image of the electromagnetism teacher
has him wildly waving his right hand at every B field and
cross product in sight. Since classical electromagnetism is a
parity-invariant theory, this handedness must all cancel out.
One might think that modern geometric language, especially
differential forms, would clear this up, but an inspection of
the “egg-crate” pictures in Misner, Thorne, and Wheeler'
shows this not to be the case. There charge density, for exam-
ple, is represented by a 3-form. A 3-form has a screw sense,
and a right-hand rule is needed to choose one such screw
sense to represent positive charge. Now the 4-vector formal-
ism is manifestly parity-invariant, but lacks the numerous
advantages of a space/time splitting. Thus arises the ques-
tion: can one find a 3 + 1 representation that is naturally
parity-invariant from start to finish?

This question has a resolution in an old, nearly forgot-
ten class of geometric objects, ones whose transformation
law includes the sign of the Jacobian of the transformation in
addition to the usual tensorial terms. They were introduced
by Weyl® and developed by Schouten,® who called them W
tensors (for Weyl). Synge and Schild* refer to them as orient-
ed tensors. DeRahm?® used differential forms of this type and
called them odd differential forms. Sorkin® uses these differ-
ential forms to discuss magnetic monopoles, and calls them
axial forms. Steenrod’ constructs the bundles for these ten-
sors, as does Eells,® who along with Frankel® calls them
twisted tensors. I will use twisted as the most apt description
of them.

Twisted tensors are usually introduced abstractly. To a
physicist they are sets of components with transformation
laws which depend on the sign of the Jacobian of the trans-
formation. To a mathematician, they are cross sections of
fiber bundles. In this paper we give a concrete development
of twisted tensors, showing the twisted tensors as indepen-
dent geometric objects. They do not depend upon a choice of
orientation, only their conventional representation does. Ex-
plicit rules for the operations of the exterior calculus for
twisted forms will be given. Pullback in particular will be
carefully discussed. Instead of using oriented maps, we will
find it convenient for the applications to define it in terms of
a transverse orientation for the subspace. The explicit treat-
ment of twisted tensors given here lends itself to simple but
accurate graphical representations. In the last part of the
paper these twisted forms are applied to classical electro-
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magnetism. The pullback rule, for example, gives us a nice
representation of the junction conditions.

TWISTED TENSORS

An orientation for a vector space is a choice of an or-
dered set of basis vectors to represent positive orientation. A
subspace of a vector space can be oriented in two ways. One
can orient it as a vector space itself. Alternatively, one can
orient its complement in the entire vector space. One needs
an orientation for the entire vector space to go back and forth
between these two types of orientations, called inner and
outer orientations by Schouten. An outer orientation is often
called a transverse orientation. Tensors of all types have re-
presentations in the tangent space,”'° and the above proce-
dure can be used to generate from any oriented tensor a geo-
metric object with complementary orientation. These are the
twisted tensors.

A tangent vector is represented by an arrow. A twisted
vector in three dimensions is represented by a line with a
definite length and a sense of circulation around it. Figure 1
shows vectors and twisted vectors and their law of addition.
To appreciate that a twisted vector is an independent notion,
consider the problem of finding a continuous nonzero vector
field on the Moebius strip which is everywhere transverse to
the edge. No such vector field exists, but a twisted vector
field with these properties does. See Fig. 2.

A 1-form in three dimensions is represented by a pair of
planes with a definite spacing and an outer orientation. A

4
/

j
Lj\/
FIG. 1. Vectors and twisted vectors. Their addition is shown by triples
which sum to zero.
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FIG. 2. A continuous twisted vector field on the Moebius strip.

twisted 1-form has instead an inner orientation. See Fig. 3.

Given an orientation of the tangent space, one can map
tensors into twisted tensors and vice versa. The basis of twist-
ed vectors generated by the usual right-hand orientation is
shown in Fig. 4. [ will indicate taking the complementary
orientation by putting a tilde over the symbol: @ is thus the
twisted differential form associated with w by a specific ori-
entation. Let me denote any ordered set of vectors which
represents the orientation of the object 7 by {r}. If £2 is the
unit volume form, then {{2 } is an orientation of the entire
tangent space, and the map tilde is given by

{{a}, {a}} ={2}, (1)

as we shall see. I will use a tilde over the symbol to indicate
twisted forms in general. The most convenient representa-
tion for twisted forms is to pick an orientation {42 } and touse
NS YY) .

dx, dy, and @%’as a basis.

INTEGRATION OF TWISTED FORMS

Ordinary differential forms can be integrated over re-
gions having an inner orientation. The most natural applica-
tion of this is to line integrals. For each little piece of the
integrand one compares the orientation of the differential
form with the orientation of the region to find the sign of its
contribution to the integral. We have Stokes’ Theorem

fo] -

FIG. 3. A 1-form, a twisted 1-form, and their rule of addition, shown by
triples which sum to zero.
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I
o

FIG. 4. A right-handed basis for twisted vectors.

where the orientation of the boundary is related to the orien-
tation of I" by

{n,{orit}=A_{r} (3)

Here n is the outward pointing normal. Ordinary differential
forms cannot be integrated over nonorientable regions.

Twisted forms, on the other hand, can be integrated
over regions which have an outer orientation. The most nat-
ural application here is to volume integrals. Let us consider
first integration over a region with the same dimension as the
space itself. Twisted n-forms already have a sign and so they
may be integrated directly, even over nonorientable regions.
To integrate a twisted (n-1)-form, we compare the orienta-
tion of the form with a vector giving the outer orientation of
the region, and from this find the sign of the integrand. In the
next section we will define the exterior derivative of twisted
forms so that we have what I think should be called the
divergence theorem,

LM’:L?‘T" 4)

The tilde here indicates that the regions have an outer orien-
tation. The boundary 47" is given an outer orientation using
the outward-pointing normal. This ensures that the contri-
bution of an internal boundary cancels, and that an integra-
tion region can be freely cut up into cells. We will soon define
pullback so that the divergence theorem can be applied also
to subspaces.

OPERATIONS ON TWISTED FORMS

All of the operations of the exterior calculus readily
extend to twisted differential forms. The general rule is that
the tilde factors through products, and that its square is uni-
ty. We want it to commute with the operations of exterior
differentiation,

di =, (5)
wedge product
ZAB=GNB=aAB, (6)
and pullback.
If we look at the monomial
& = flx") A% Ndx® A Adx" (7)
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FIG. 5. The wedge product of a 1-form E and a twisted 1-form H is a twisted
2-form. A regular 2-form would not behave properly under reflection in the
plane P.

and use the commutivity of d and tilde we find
di = gj—]dk" Adx* A Adx". (8)
X

The divergence theorem will only be satisfied if we assign to
@ the orientation {£'} (just compare with the corresponding
Stokes’ theorem). This forces the map tilde to have the form

Haot{w}} ={2}. (9)
The orientation of the wedge product a A S is given by
{anB}={{a},{8}}, (10)

where the vectors in {a} should be in the kernel of {8} and
vice versa. From Eq. (9) we find the relation

{BY, {ahB 1} = {a). (11)

The wedge product of a 1-form and a twisted 1-form is a
twisted 2-form. See Fig. 5. The wedge product of two twisted
1-forms is an ordinary 2-form, as shown in Fig. 6. The con-
traction of a vector with a twisted 1-form gives, not a signed
number, but an oriented number (screw-sense).

One operation not specified by the tilde-rule is pullback.
While ordinary differential forms can be pulled back onto
subspaces directly, twisted forms require an outer orienta-
tion of the subspace. If this outer orientation is given by {n},
then the orientation of the pullback ¥*(&) is given by

{{n}, {vx@}} = {a}. (12)
If we give the subspace the orientation {£2 '} satisfying
{{n}, {2} ={n}, (13)

FIG. 6. The wedge product of two twisted 1-forms is an ordinary 2-form. A
twisted 2-form would not behave properly under reflection in a horizontal
plane.
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then pullback commutes with tilde. The pullback behavior
of twisted forms will fit naturally into the junction condi-
tions of electromagnetism.

To use the divergence theorem on subspaces, we need
an outer orientation for the subspace I, and an outward
normal vector n for the boundary 7. The outer orientation
of the boundary is then

{or}={{rh n}. (14)

A metric is usually introduced into the exterior calculus
by the Hodge star operator. This operator involves both the
metric and a choice of orientation. We can define an unor-
iented version of the Hodge star by mapping forms to twisted
forms, and vice versa. This can be handled by writing the
new operator as, ¥, and using the tilde-rule to simplify pro-
ducts. Despite its appearance, * is independent of any choice
of orientation.

ELECTROMAGNETISM

The manifestly parity invariant representation of elec-
tromagnetism comes from the work of van Dantzen'' and
Schouten,? although their work is not in modern notation
and sometimes hard to follow. The representation in parity
invariant form uses the geometric objects shown in Table I
and in Fig. 7. The co-orientations are all taken with respect
to 3-space. Time enters here just as a parameter. These “egg-
crate” representations of 2-forms are the same as those given
in Schouten?® or Misner, Thorne, and Wheeler.! The devel-
opment of electromagnetism here follows Frankel® except
for the units.

Maxwell’s equations for the evolution of the electric
and magnetic fields read

9B = —dE, (15)
at
D _ if— anJ, (16)
at

with initial-value equations
dB =D, (17)
dD = 4rp. (18)

We are using unrationalized units with ¢ = 1 (thus avoiding
the e.s.u./e.m.u. distinction). The operator d is exterior dif-
ferentiation in 3-space. The Lorentz force law is

F=g(E—vB) (19)

The geometric objects were chosen as follows. The cur-
rent is represented by a twisted 2-for J, an “egg-crate” en-

TABLE 1. Geometric objects for electromagnetism.

1-form
twisted 2-form
2-form
twisted 1-form
twisted 2-form
twisted 3-form
scalar

1-form

AeT Sty Oty
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FIG. 7. The geometric objects representing electric and magnetic fields. The
signs of the fields have been carefully chosen. The charge shown creates the
D field shown, and that D leads to the £ shown, etc.

closing unit current with an orientation given by the direc-
tion of current flow. Using an ordinary 2-form to represent
current density would improperly describe the current flow
by a screw sense. The charge density is represented by a
twisted 3-form enclosing unit charge, with a sign for positive
or negative charge. Again a twisted 3-form is used because
an ordinary 3-form would describe charge with a screw
sense. An ordinary 3-form would represent magnetic charge.
Charge conservation follows by taking the exterior deriva-
tive of Eq. (16):

P _ _dj, (20)

ot
and using Eq. (18). It guarantees that the initiai-value equa-
tions are preserved by the dynamical equations.

With the above geometric structures for charges and
currents, we see that D and H must also be twisted. The

FIG. 8. The action of ¥ in three dimensions. The 1-form £ and the twisted 2-
form D form a rectangular parallelopiped with sides satisfying @ = bc.
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[w}}
m

FIG. 9. The action of ¥ in two dimensions. The 1-form E and the twisted 1-
form D form a square.

parity properties are now nicely straightened out. The B field
is a 2-form and does not change sign under inversion. The D
field is a twisted 2-form and does. Likewise, E is a 1-form and
does change sign under inversion, while H does not. Note
that we give the B field the correct parity by making it a 2-
form rather than a twisted 1-form.

No covariant differentiations are needed and thus far
no metric has appeared. This is the usual advantage of using
differential forms in electromagnetism. The metric must en-
ter, and it does in relating £ to D and B to H. The usual
formalism uses the Hodge star operator for this, but for our
parity invariant formalism we will use *. The construction in
vacuum is shown in Fig. 8. We have
D =*E, (21)
H="*B (22)
In Fig. 9 we show the construction in two space dimensions.
This is the familiar square construction. It requires only a
conformal structure, not a full metric. Indeed, conformal
transformations are only a symmetry of electromagnetism in
two and four dimensions.

The junction conditions of electromagnetism are of two
types. E and B are continuous across any surface. Their pull-
backs onto any surface from either side must be equal. D and
I?, however, can have discontinuities if there are surface

FIG. 10. A surface current K and a suitably discontinuous H field. The
addition ignores the 4+ factor for clarity.
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FIG. 11. A surface charge 4 and a suitably discontinuous D field.

charges or currents. Surface charge can be represented by a
twisted 2-form on the surface, with the orientation taken in
the two dimensional surface. A surface current is represent-
ed by a twisted 1-form on the surface. We pullback the fields
on the two sides of a surface, orienting the surface with a
vector pointing from the surface fo the side where the field is
defined. The field on the other side of the surface uses the
opposite orientation. The junction condition is that the sum
of the pullbacks of H from the two sides is 4 times the
surface current, and the sum of the pullbacks of D is 47 times
the surface charge. This natural relation between surface
current and the H field is shown in Fig. 10; the relation be-
tween surface charge and the D field is shown in Fig. 11. We
orient the surface with a vector » pointing from the surface to
the side where the field is defined, and use the opposite orien-
tation to pullback the field on the other side of the surface.
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Note how naturally these two types of junction condi-
tions fit into our formalism. We cannot naturally give a sign
to the discontinuity of either E or B, nor do we need to. For D
and H the sign is forced on us by the behavior of twisted
forms under pullback. It is amusing to note that magnetic
charge does not fit naturally into this formalism. A surface
current of magnetic charge has an outer orientation and can-
not be described by any geometric object intrinsic to the sur-
face. How is this difference between electric and magnetic
charge reconciled with duality rotations? These are the
transformations:

E—(cos 8)E + {sin 8B, (23)
B— — (sin @ }*E + (cos 6)B. (24)

Note that the duality rotation must involve * and not . It is
not a parity invariant transformation.
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As an introduction, the eigenvalue problem for a linear operator 7 having a discrete point
spectrum and a complete set of eigenfunctions is studied. The bivariational principle for T and its
adjoint operator 7' is derived, and the biorthogonal properties of their eigenfunctions are
discussed. The main part of the paper is then concerned with the problem whether these features
can be extended also to a general pair of adjoint operators, Tand T, in which case the eigenvalue
problem is replaced by the more general stability problem. The stability problem for a pair of
adjoint operators—T7 and 7" —is first formulated in terms of nonorthogonal projectors—O and
O —which decompose these operators and satisfy the commutation relations 70 = OT and
TTO' = O'T". In the case of a finite space, these skew-projectors may be explicitly expressed in
product forms derived from the reduced Cayley-Hamilton equation for the operator T It is
shown that, if the stable subspaces defined by these projectors are properly classified by their
Segre characteristics, one may explicitly derive the form of the projectors for the irreducible stable
subspaces associated with the individual Jordan blocks of the so-called classical canonical forms
of the matrix representations of 7and T'T. It is further shown that, in such a case, the
biorthonormality property of the generalized eigenfunctions is still valid, and that a bivariational

principle may be derived. The extension of these results to infinite spaces is finally briefly

discussed.

PACS numbers: 03.65. — w

1. INTRODUCTION

A fundamental mathematical tool in quantum theory is
represented by the linear operators 7" defined on a Hilbert
space £ = { f'{ having the positive definite binary product
{f1g). Such an operator T has a domain D (T'), and it has
further an adjoint operator 7" with the domain D (T") de-
fined through the relation

(f1Tg) =(T"f|g). (1.1)
Considering the physical applications, however, one is par-
ticularly interested in such operators F which have real ex-
pectation values (F),, = (f|F|f): {f|f) for any state
vector f within D (F). Using the well-known polarization
identity,' it is easily shown that such operators are self-ad-

Jjoint, F' = F, which means that { f|Fg) = (Ff|g) and that
D (F') = D (F). In the case of a purely discrete point spec-
trum, these operators have real eigenvalues and orthogonal
eigenfunctions and, in many cases, the latter form a com-
plete set which may be used as a basis for the space § = { f'}
in formal studies as well as in practical applications. These
properties may also be generalized to the case when the spec-
trum of the operator F'is partly or fully continuous.

In addition, one also studies sometimes in physics nor-
mal operators A characterized by the relation AA T = A TA.
They have complex etgenvalues and orthogonal eigenfunc-
tions, and they may be considered as combinations
A = A + iBof two self-adjoint operators 4 and B having the
property AB = BA. Of particular importance are, of course,
the unitary operators U characterized by the relation
UU" = U" U = 1 having their eigenvalues in the unit circle
in the complex plane. The spectra of the normal operators
may be either discrete point spectra or partly or fully contin-
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uous, and the main properties are still essentially the same.

From the point of view of physics, it seems hence suffi-
cient to study the properties of the self-adjoint and the nor-
mal operators. However, for the mathematical treatment of
many problems in the quantum theory of matter, one has
during the last decades become interested also in the general
linear operators T which are neither self-adjoint nor normal,
in the partitioning technique® for solving the eigenvalue
problem with the aid of a complex parameter or in the com-
plex scaling method? for studying resonance phenomena in
scattering problems.

The question is under what conditions one can genera-
lize the highly useful properties of the self-adjoint and nor-
mal operators—particularly the orthogonality and expan-
sion properties of the eigenfunctions—also to general linear
operators 7. The general treatment of this question is a com-
paratively difficult mathematical problem which may still
have to wait for some time for its final solution. In this paper,
we will only try to familiarize ourselves with certain aspects
of the problem in some particularly simple cases which still
may be of interest to physicists and quantum chemists.

2. OPERATORS WITH DISTINCT POINT SPECTRA AND
COMPLETE SETS OF EIGENFUNCTIONS

Let us start by considering an operator 7" having a dis-
crete point spectrum {4, | consisting of distinct (nondegen-
erate) eigenvalues 4, in the complex plane associated with
the eigenfunctions C; , so that TC,, = C, A,.. The eigenfunc-
tions {C, | are assumed to be complete in the sense that they
form a basis for the space § = { f'}, so that one has an expan-
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sion of the type

=3 Cea, (2.1)

for every element f in §. In such a case, the operator T has
an adjoint 71 defined through the relation (1.1), and it will
turn out to be convenient to study the two operators simulta-
neously as a pair (T,T"). The operator T is assumed to have
the eigenvalues u and the eigenfunctions D. Starting from
the eigenvalue problems

TC, =4, Cy,
one gets immediately
p*(D|C,) =(T'D|C,) =(D|TC,)

T'D = uD, (2.2)

-_—/11( <DIC1<>, (2-3)
ie.,
(u* — LD |Cy) =0, (2.4)
which means that
(D|C) =0 if u£A L. 2.5)

This is the so-called general biorthogonality theorem, and we
will now show that—in the special case considered in this
section—it replaces the orthogonality theorem for the self-
adjoint and normal operators in the most useful way.

So far, we have not made any assumptions about the set
{ i}, i.e., about the spectrum of the operator 7. It may now
be shown that, to each eigenfunction D to T, there exists
one and only one eigenfunction C, to 7, such that

(D1C,)#0. (2.6)

If all the eigenfunctions C, would be orthogonal to D, one
would have (D | f) = 3, (D |Cy )a, = 0for all £, which is
impossible since D #£0. Combining (2.4) and (2.6), one gets
further A, = u*, and since all the eigenvalues A, are dis-
tinct, the function C, is unique except for a trivial constant.
This means that one has a unique pairing between the eigen-
functionsto Tand 71, and we will introduce the notation D,
for the eigenfunction to 7' having the eigenvalue u, =1 ¥
and the property (2.6). Hence the spectrum §{ g, } is also
distinct and discrete.

Since the spectra {4, ] and { g, } are both ennumera-
ble, it may be convenient to arrange them in a specific order
which is invariant under complex conjugation (u, =4 ¥),
for instance after the properties of their absolute values or
their real components, or both.

It is now clear that the eigenfunctions C, must neces-
sarily be linearly independent. Multiplying the relation

S Ciay =0 (2.7)
k

to the left by D,, one gets (D, |C;)a; =0, i.e., a; = 0. This
implies that the expansion (2.1) must be unique. Multiplying
this relation to the left by D,, one gets further

(D)1 Y= (D)|Cray =(D,|C))ay, (2.8)
K
ie.,
a, =(D,|C,)) (D, f). (2.9)
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Substitution of (2.9) into (2.1) then gives the relation

f=;Ckak =zk"ck (Di|C) =YD | £,

which corresponds to the following “resolution of the identi-

’,

ty':

(2.10)

1=2|Ck)(DkICk>“‘(Dk[=ZOk. (2.11)
k k
Here the operators
0, =G (Dl 2.12)
(D |Cy)
satisfy the following fundamental relations:
0:i=0,, 0,0, =0, TrO, =1, (2.13)
(2.14)

TOkZOkT=AkOk, T=;ik0k'

The operator O, is hence an eigenprojector to T associated
with the eigenvalue A, ; the last relation (2.14) is the “spectral
resolution” of the operator 7.

For the adjoint operator O | # O, one has

(Cr|Dy)
and it satisfies the relations
(01¥=0}, 0}0i=0, Tro}=1, (2.16)
T'0} =0[T' =130}, (2.17)
1=20£, TT=Z/1zOI, (2.18)
k k

which are the adjoint of the relations (2.13) and (2.14) and
{2.11). Using the first relation {2.18), one obtains

f=1f=3 01f =3 D, (C|Dy) " (Ci|f), (2.19)

which also implies that the eigenelements { D, } form a com-
plete set and may serve as a basis.

The eigenfunction D, is determined except for a con-
stant factor. Putting D ;, = (C, |D, ) ~'D,, one obtains the
normalization

DilCr =1, (2.20)
which will be assumed to be automatically fulfilled in the
following.

Introducing the bold symbols' C = {C,,C,,C;,--} and
D = {D,,D,,D,,} one may now write the biorthonormality
theorem (2.5) and the resolution of the identity (2.11):

(Dllck>=51k’ 1=2|Ck> (Dk| (2-21)
k
in the condensed form:
(D|IC) =1, 1=|C) (D|. {2.22)

Since the set C is complete, it is evident that the set D can be
expressed in the form D = Ca, which gives
(D|C) = (Ca|C) = a'{C|C) =1and ' = (C|C) !
= a. Hence
D=C(C|C) '=C,, (2.23)

i.e., the set D is the reciprocal basis of the basis C, and it is
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completely determined by the set C. Substituting (2.23) into
the second relation (2.22), one obtains

1=C) (c|C)~¥C], (2.24)

which is the completeness relation for a nonorthonormal ba-
sis C. Letting A be the diagonal matrix with the elements
{44 ], one can finally write the eigenvalue relations (2.2) in
the condensed form

TC=CA, T'D=DA* (2.25)

It should be observed that some of the theorems treated
in this section may be generalized also to operators having
partly or fully continuous spectra on the real axis or in the
complex plane. Some of these questions will be treated in a
forthcoming paper.

3. BIVARIATIONAL PRINCIPLE FOR A PAIR OF
ADJOINT OPERATORS

The variational principle is a fundamental tool in evalu-
ating approximate eigenvalues and eigenfunctions to self-
adjoint and normal operators. It is remarkable that—to
some extent—it may be generalized also to general linear
operators and their adjoints. Starting from the eigenvalue
relations

TC=CA, T'D=Dy, (3.1)
one gets directly
a=S2ITIC) _1oqp (3.2)
(D|C)
t
= w:Tr T'rt=i#% (3.3)
(C|D)
where
(DIC) (CID)
are “‘transition operators” satisfying relations of the type

r*=r, TtI'=1, [#I'". (3.5)

In connection with the exact expressions (3.2) and (3.3), it is
now convenient to study the variational forms:

(x,| T |x,) L= (x,|T"|x2)
(x,]x,) (x,]x,)
where x, and x, are a pair of elements of § = { f } having the

property {x,|x,) 0. Assuming x, and x, are variations of
the true eigenfunctions C and D, respectively, so that

x,=C+6C, x,=D+ 6D, (3.7)
one obtains

(T — A-l)x, = (T — A-1)6C,

(T — A1)t x, = (T — A-1)t 8D. (3.8)
Starting from (3.6), one gets
(x| T~ A-1[x,) _ (5|7 — A-116C)

I, = =I% (3.6

I,—A=
(x3|x,) <x2|x1>
_ ((T—/l-l)Tx2|6C) _ ((T—/l-l)*ﬁD |6C)
(X)) {xa)x1) ’

(3.9)
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ie.,
(8D|T — A-1|5C)
<X2|x1> .

Since the first-order variation does not appear in this expres-
sion, one has

81, = 0.

Similarly, one gets 81, = 0.
The reverse theorem is also true. If 5/, = O for all varia-
tions 8x, and &x, of a given pair x, and x,, then

(T—11)x, =0, (TT —I*1)}x,=0, (3.12)
i.e., x, and x, are eigenelements to 7 and T, respectively,

associated with the eigenvalues I, and I, = I *. For the
proof, one observes that I, = 4 /B, which gives

L=+

(3.10)

(3.11)

_ BSA—ASB 1

81, E (64 = 1,8B) =0, (3.13)
where
84 — 1,68 = (6x,|T — I,-1|x,)
+ {x,|T = I-1}6x,)
= (6x,| T — I;-1]x})
(x,|(T=I1) xa)* =0 (3.14)

for all variations 6x, and 8x,, including also the cases when
either 6x, = 0 or 8x, = 0. This gives

(6, (T — 1 1)xy) =0, (6x,[(T—1-1)'x;) =0

{3.15)

for all &x, and 8x,, which implies that the relations (3.12) are
true.

The variation principle (3.11) may now also be used to
obtain approximate eigenvalues and eigenelements. If
& = {¢,s-nd,, } and ¥ = {¢},¢,....,¥,, | are linearly inde-
pendent sets, one may try expansions of the type

x,=¢c, x,=1d (3.16)
and look for the *best approximations” to the true eigenele-
ments C and D, respectively. Using the bivariational princi-
ple, one has

_ <x2|T|x1) i dT(‘MTM))c :_’i

I = (3.17)
L (ulky d (b B
and further
84 — 1,6B
=8dT (Y| T — I 1|dde + d' (V| T— I-1]é)S¢ =(;)18)
for all variations ¢ and &d. This gives
(T —11/d)e =0, (3.19)
{<<1>ITf —I+11)d=0. (3.20)

These equations are generalizations of the standard secular
equations in quantum mechanics, and the approximate ei-
genvalues I, are the roots to the polynomial equation:

Pi2)=|{d|T - z-1{d)| = 0. (3.21)
Properties of the approximate eigenfunctions. In order to
study the solutions to Eqgs. (3.19}(3.21) in greater detail, we
will introduce the notations

T =|TY), T =(Tolb) =($IT"Y), (3.22)
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= (bl$), A" = (/). (3:23)

Indicating approximate quantities by a bar, one can write
= A. One may now write (3.19) and (3.20) in the form

.7-0,‘ = Acizi, dez = AfdiZ ?'v (324)

which equation systems should be solved for i = 1,2,...,m,
where z = A,,4,,...,A,, are the roots to (3.21). Assuming that
the matrix A = {(|d) is nonsingular, and introducing the
matrix

T=4"'7, (3.25)

one can write the first relation (3.24) in the form T¢; = ¢;4,.
Forming the quadratic matrix y = {¢;,¢,,...,¢,,, } of order
m X m, one has Ty = yA, where A is the - diagonal matrix
formed by the approximate eigenvalues A;. This gives the
relation

vy ' Ty =4, (3.26)

which shows that the matrix T is brought to diagonal form
by means of a similarity transformation y. The approximate
eigenfunctions are given by the relations C; = dc; for

i =1,2,3,...,m and for the row vector C = {C,,C,,...,C,, },
one obtains

C = ¢dy. (3.27)
For the approximate eigenfunctions to 7’1, one has mmilarly
D = d; and, for the row vector D = {DI,DZ, D, ], this
gives

D = {5, (3.28)
where 8 = {d, d,,...,d,, ] is a quadratic matrix of order

m X m formed by the eigenvectors d;.
In order to study the connection between y and 8, we
will take the adjoint of (3.26), which gives

YTy~ =2 (3.29)
or

YT AN )T = A (3.30)
ie.,

THAN ') = (yT) A (3.31)

A comparison with the second relation (3.24) in the form
778 = AT 8A* shows that one has the connection

d=(A")"'y")"!, 8 =y 'AT, (3.32)
where one has also chosen a convenient normalization of the
eigenvectors d;.

The exact solutions satisfy the relations (2.22) and
(2.23), and we will now study the behavior of the approxi-

mate eigenfunctions. Using (3.27), (3.28), and {3.32), one gets
directly

(DIC) = (Bldy) =8' ([d)y =y 'A"Ay =1,

(3.33)
which means that the basic orthonormality relation is ful-
filled. Since we have used only truncated sets of order m, it is
evident that the second relation (2.22) cannot be valid, since
it'expresses a resolution of the identity with respect to the
entire Hilbert space 9. Instead one has

= |C) (D| = |dy) (48] = |4)y8' (V|
= [6)yy AT (] =[4) (bId) (Y],
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(3.34)

where Q is an operator having the properties
0?=Q, Tr@=m, Q'#Q. (3.35)

Since Q¢ = &, it is clear that Q is the projector on the sub-
space M, spanned by the elements ¢. Similarly

Q" = ) (dlh) (| (3.36)

is the projector on the subspace M,, spanned by the element
1. This means that, instead of the second formula (2.22), one
has the relations

3 1€ (D, (3.37)

i=1

S 1B) (@,

i=1

which may be described as “resolutions” of the projectors
associated with the subspaces M, and M, respectively, in
terms of one-dimensional projectors. However, unless the
sets & and ¥ span the same space one has Q #Q7, which
means that these projectors are not orthogonal projectors
but of a more general character which will be further dis-
cussed in Sec. 3.

In order to study the analog of relation (2.23), we will
form the reciprocal basis C, to the basis C through the rela-
tion

C, = C(CIC) ' = dvIY' (d]d)v] !
=dyy~{dld) (v = d(bld) iy !

—[C) (B| =

o' = D) (€| = (3.38)

(3.39)

Taking the projection of C, on the subspace M|, one obtains

Q'1C, = [4) (o) (b0} (dl) ~'(v") ™"
= |)A") ") = [$)d =D, (3.40)
ie.,

D=0'C,, (3.41)
which is the relation desired. In the case when m— «» and
the two sets ¢ and ¥ become complete, (3.39) goes over into
(2.23).

It should be observed that these results are independent
of any linear transformations ¢’ = éa and ¥’ = P of the
basic sets introduced. Starting from a fixed set ¢, it may be
convenient to introduce the transformed set

¥, = P{(b[d) !, since this gives
(b, 19) =1. (3.42)
One can then describe the set ¥, as the set in M, which is
biorthonormal to the set ¢ in M, . Using (3.34) and (3.36), one
gets directly
=|d) (b, Q' =) (d] (3.43)

According to (3.25), one gets for the fundamental matrix T

T = (b|6) ~ (YT |d) = ($, [T |9), (3.44)
whereas the approximate solutions are given by the formulas

C=¢y, D=4,(¢")"" (3.45)

In concluding this section, it should be observed that
the variational quantity 7,, which gives the approximate ei-

genvalues 4, is a complex number, and this means that the
optimum value defined by 87, = 0 is not a simple “maxi-
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mum” or “‘minimum” but of a much more complicated char-
acter, the nature of which is hidden in the ““hessian’ given by
the second-order term in formula (3.10). In fact, little re-
search has been done so far to investigate how the quantity J,
approaches an eigenvalue A, as m— o0 and the basic sets
become complete. In the case of self-adjoint operators
bounded from below, one has the Hylleraas—Undheim se-
paration theorem,* and it would be interesting to study what
happens to the roots of the secular equation (31) when one
more function is added to the sets ¢ and ¥, and the order is
changed from m to (m + 1), etc. Even some computer studies
may be helpful to get a hint how to approach this problem.

4. STABILITY PROBLEM FOR A PAIR OF ADJOINT
OPERATORS

In the treatment of self-adjoint and normal operators,
the eigenvalue problem (2.2) was a convenient starting point
for the construction of sets of eigenfunctions which were
complete and which hence could be used as a basis for a
further study of the properties of the Hilbert space £. In Sec.
2, we have studied a particular family of linear operators T
which by assumption could be treated in a similar way. It
should be observed, however, that—in the study of a general
linear operator 7—the eigenvalue problem (2.2) is too nar-
rowly formulated to serve as a basis for the theory, and that it
has to be replaced by more general concepts. Some of these
will be discussed in this section.

A subspace V of § is said to be stable under the operator
T ifforany element f* out of Valso Tf ' belongsto V. A stable
subspace FVis said to be irreducible with respect to T, if there
is no proper subspace of ¥ which is also stable under 7;
otherwise it is said to be reducible. The stability problem and
the search for irreducible subspaces of 7'is apparently a gen-
eralization of the eigenvalue problem TC = AC, which cor-
responds to the existence of one-dimensional stable sub-
spaces. The self-adjoint and normal operators are
characterized by the fact that all their irreducible subspaces
are one-dimensional, whereas this is usually not true for lin-
ear operators T in general.

Let us assume that the stable subspace V is of finite
order p and that it may be spanned by the linearly indepen-
dentset f = { f, f5,..., /, }. The stability property implies
that

Tf, = ifka/, (4.1)

k=1

where the coefficients form a matrix T, = T}, } of order
p X p, which may be considered as the matrix representation
of the operator T in the subspace ¥ with respect to the set f.
In “fat symbols,” one may write (4.1) in the condensed form
Tf = fT, and, if there is no risk for misunderstanding, we
will omit the index f on the matrix.

If the basis for ¥ undergoes a linear transformation
f = fa, one has Tf = Tfa = fTa = f(a™ 'Ta) =T, ie,

T =a 'Ta, (4.2)

which is referred to as a similarity transformation. If A and B
are quadratic matrices, their determinants fulfill the multi-
plication rule |AB| = |A|-|B|. Considering the characteristic
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polynomial
Piz)=|T — 241, (4.3)
where z is a complex variable, one gets immediately that
P'l2)=|T' — z1|=|a " T — z-1)a|
=loa™ T —z1}-|a|

=|T — z.1|=P|z), (4.4)

which means that the coefficients of the characteristic polyn-
omial are invariant under linear transformations; they may
hence be considered as characteristics of the operator T with
respect to the subspace ¥ which is, of course, the reason for
the name of P (z). Other characteristic quantities are the roots
z=A,A,,...,A, of the equation P (z) = 0, which are called
eigenvalues also in the general case, even if there are no ei-
genvalue relations in the ordinary sense. The multiplicity of
a specificrootz = A, will be denoted by g, and referred to as
the “order of degeneracy” of this root. According to the
factorial theorem, one has then

Pz} =] A — 2, (4.5]

k
which relation gives the connection between the coefficients
and the eigenvalues.

The question is now whether the subspace Vis reducible
or not; in the former case it may be decomposed into two
subspaces V', and V, which are both stable under the opera-
tor T. In such a case it should be possible to find a basis f, for
the subspace V', of order p,, so that the elements of f, trans-
form among themselves under the operator 7, and similarly
for the subspace V, of order p,. In such a case, there exists
also a similarity transformation (4.2), which changes the ma-
trix T into two diagonal blocks:

o 'Ta = (T' 0 )
0 T,)’
where T, and T, are of order p, and p,, respectively. It is now
evident that, if one wants to decompose the space ¥ into
irreducible subspaces, one should try to find a similarity
transformation y which block-diagonalizes the matrix T as
far as ever possible.

At this point we observe that one has the elementary
theorem that, if all the eigenvalues A, are distinct or nonde-
generate with g, = 1, the matrix T may be completely dia-
gonalized, and all the irreducible subspaces are hence one-
dimensional. In such a case, one may apply the theory of the
two previous sessions. This means also that all complications
in the general case are related to the existence of degenerate
eigenvalues. By considering the simple examples,

(4.6)

21
Jz:(o /l)’
i 1 0
=lo 2 1}, (4.7)
0 0 A

one can easily convince onself there exist elementary matri-
ces which cannot be diagonalized. The eigenvalues arez = A
with g = 2,3,--, and—if they could be diagonalized—one
would havey = 'J,y =41, and J, = y-4A-1,y ' =41,
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which is certainly a contradiction. Matrices of the type (4.7)
are known as Jordan blocks, and we will later see that they
play a fundamental role in the theory of degenerate eigenval-
ues.

It should be observed that the existence of the stable
subspace V' to the operator T does not given an immediate
clue as to existence of a subspace V' which is stable under the
operator Tt and, for the moment, we will consider this as an
independent problem. Assuming that the subspace ¥ is
spanned by the set g = { g,, g,,..., 8, }, the stability condi-
tion takes the form

g
TYg = Z g Ryis (4.8)

k=1
where R = {R, ;] may be interpreted as the matrix repre-
sentation of the operator T in the space V' with respect to
the basis g. One may then write the relation (4.8) in the con-
densed form

T'g=gR. (4.9)

In order to proceed, we will now develop some more math-
ematical tools and auxiliary concepts.

Projectors associated with a pair of subspaces. Before
proceeding with the stability problem, we will now study
whether one can construct a pair of adjoint projectors O and
O which are associated with two arbitrary subpaces M - and
M_, respectively, of the same order p. As we will see, a neces-
sary and sufficient condition for such a construction is that
there is no element in M—except the zero element—which
is orthogonal to all the elements of M, .

Let us assume that M, and M, are spanned by the lin-
early independent sets f = { £, f,,..., f, ] and
g= {8828, |- Since thereis no element /' = fain M,—
except the zero element—which satisfies the orthogonality
condition {(g| /') = O the equation system

(g|f') = (glf)a=10 (4.10)

should have only the trivial solution a = 0, which means that

|(g|f)|#0 and that (g|f) is a nonsingular matrix having an
inverse.

The problem is to construct a pair of operators O and
O satisfying the relations

0°*=0, TrO=p,
of=f Ofg=g

(4.11)
(4.12)

Taking an arbitrary element x out of the Hilbert space
$ = {x}, one has the decompositions

x=fc+r =gd+r, (4.13)
where
Ox=fc, O'x=gd (4.14)

are the projections of x on M, and M_, respectively. For the
remainders 7, and #,,onehas Or, = 0and O'r, = 0, i.e., they
are obviously orthogonal to M, and M/, respectively:

(glrl) = <0Tg"'1) = (g|0r1) =0,
(4.15)
(f|r,) = (Of|r,) = (f|O*r,) =0.
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This gives
(glx) = (glfe +r,) = (glf)e,

(4.16)
(flx) = (flgd + r,) = (fg)d,
ie.,
c = (g|f) ~'(glx), (4.17)
d = (flg)~ '(f|x). (4.18)
Hence one has for the projections:
Ox = fc = f(g|f) ~"(g|x)}, {4.19)
0" x = gd = g(flg) ~'{f|x), (4.20)
ie.,
0= |f) (g|f) (g, (4.21)
0" = |g) (flg) ~'(fl. (4.22)

It is immediately checked that these projectors satisfy the
relations (4.11) and (4.12), and that each one is the adjoint of
the other. If the sets spanning M, and M, undergo linear
transformations, f = foo and g’ = g3, the operators O and
O7 stay invariant. Introducing the particular set

g, = g(f|g) ', one gets the relations

g =glfl)", (g |f)=(flg,)=1, (4.23)

i.e.,, thesetg, is thebasis in M, which is biorthonormal tothe
basis f in M. In such a case, one has the simplified relations

0=If) (g, O =lg)(f]. (4.24)

We note that the previously studied operators O and O,
defined by (3.34) and (3.36) or (3.43), are projectors of this
general type.

In the special case when the set g may be expanded in
the set f, and vice-versa, one has apparently g, = f(f|/f) ~';in
such a case, the subspaces M, and M, are identical and
0 = 0" = |f) (f|f) ~'(f|, which means that O has become
an orthogonal projector of a more conventional type.

Stability problem formulated in terms of projectors. Let
us consider a subspace ¥ which is stable under the operator
T, and let us assume that it is described by a projector O
having V as its range. The results of the previous subsection
have shown that there is an infinite family of projectors hav-
ing the property, and it is hence important to have this non-
uniqueness in mind. The only exception is the orthogonal
projector which is self-adjoint and hence not general enough
for our purposes.

For any element x of § = {x}, the projection f' = Ox
belongs to ¥, and the stability condition implies then also
that 7f' = TOx belongs to ¥, i.e., OTf' = Tf' or OTOx-
= TOx for all x. This gives the operator relation

TO = OTO (4.25)

as an expression for the stability condition. Its implications
will be studied in greater detail below. A projector O which
satisfies (4.25) is said to reduce the operator 7.

The operator P = 1 — O fulfiils the relations P* = P
and PO = 0, and it may be interpreted as the projector for
the complement V_ to the subspace V defined by the projec-
tor 0. Since O # O, one has usually four different projectors
0, 0%, P, and P' defining the subspaces ¥, V', ¥,,and ¥},
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respectively. One may now write the stability condition
(4.25) for the subspace V in the special form

PTO=0. (4.26)

Taking the adjoint relation 01 Tt Pt = 0, one realizes that
the projector P reduces the adjoint operator T, and that
hence the subspace V! is stable under T'F.

Since(P')' O = PO = 0, thesubspace ¥ = { f’} and V!

= { g"] are automatically orthogonal:

(g1 /"y =(P'g"|Of") =(g"|PO|f") =0, (4.27)
which is obviously an extension of the previously derived
biorthogonality theorem (2.5).

In studying the subspace ¥ and V', we note that they
are obviously of the same order, since Tr O = Tr OF. We
observe further that there is no element of ¥ (except the zero
element) which can be orthogonal to all elements of V', since
it would then be orthogonal to ¥ as well as V', i.e., to the
entire Hilbert space §, which is impossible. At this stage
there is, of course, no reason for the subspace ¥ to be stable
under the operator T'T.

If the subspace Vis of finite order p, the same applies to
the subspace ¥'*. Spanning the subspace ¥t by the linearly
independentsetg = { gy, 8,,..., g, }, we observe that, accord-
ing to (4.8) and the reasoning above, the condition

[(glf)|#0 (4.28)

is automatically fulfilled. In such a case, one can construct
the projector according to (4.21):

0=1f) (glf) " (g|. (4.29)

Multiplying (4.25) to the right by f and observing that Of = f,
one obtains 7f = OTY, i.e.,

TE=fT, T=(glt)~'(g|T|6), (4.30)

which is analogous to (4.1) with an explicit expression for the
matrix T. The second relation may look somewhat unfami-
liar, but it may be obtained from the first by multiplying to
the left by (g| and solving for T.

In the case when not only the space ¥ but also the com-
plimentary space ¥, is stable under 7, one has the relation

(1—P)TP=0TP=0, (4.31)
in which case the projectors O and P are said to decompose
the operator 7. Taking the adjoint relation of (4.31), one
obtains PTTTO" =0or

7o' =0'T'07, (4.32)
which means that the subspace V' defined by O is stable

under the operator 71, Multiplying (4.32) to the right by g
and observing that O'g = g, one obtains T'g=0"T'gor

T'g=gR, R=(flg) '(fiT'g). (4.33)
Since (f|T7g) = (T¥|g) = (fT|g) = T (f|g), one has
R = (f|g) ~'T'(f|g), (4.34)

which implies that R is a similarity transformation of the
adjoint matrix T'. Introducing the special set g, = g(f|g) ~’
characterized by the relations (4.23) and (4.24), one gets fin-
ally

Tf*=fT, T'g =¢T, (4.35)
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where
T={g |T|f). (4.36)

It is evident that it is by no means trivial to determine
the projectors O and P =1 — O, so that both V" and V', be-
come stable under the operator T and that, in practice, it
may be easier to determine O and O' so that ¥ and V' be-
comestable under Tand 7'7, respectively. Fortunately, there
is one more aspect to the problem. It is evident that the nec-
essary and sufficient condition for the validity of the two
relations PTO = OTP=0or TO = OTO = OT is that

TO = OT. (4.37)

Insuchacase,onehasalsoOT Tt = T107, .., if O decom-
poses T, then O ' decomposes T'" . From these two commuta-
tion relations and the explicit expressions for O and O" ac-
cording to (4.29), one can again derive the relations {4.30) and
(4.33).

Through the relation (4.37), the problem of finding the
projectors which decompose the operators Tand 77 may be
reduced to the problem of finding the projectors which com-
mute with T. If a projector O is the sum of two projectors,
i.e., O = O, + O,, which both commute with 7, the projec-
tor O is said to be reducible—otherwise it is irreducible.

The problem of finding the irreducible subspaces of T
and T is then essentially reduced to finding a resolution of
the identity operator in terms of irreducible projectors,
which commute with the operator 7, analogous to (2.11). In
the special case when there exist one-dimensional stable sub-
spaces, one has according to (2.14) and (2.17) the relation

TOk =0k T=/{’k0k’ (4.38}
T'o, =0iT' =407, (4.39)

i.e., the operators O, and O] are eigenprojectors to 7" and
T, respectively. In the following, we will see that, in the
study of general linear operators 7, the relation (4.37) for
irreducible projectors O is going to replace the eigenvalue
problem (2.2) as a basis for the theory. In the next section, we
will try to approach the problem of the proper ‘‘resolution of
the identity.”

5. TREATMENT OF THE STABILITY PROBLEM BY
USING PRODUCT PROJECTION OPERATORS IN THE
FINITE CASE

For the sake of simplicity, we will start by considering a
space A = [ x] of finite order . If a linear operator 7" defined
on this space has the eigenvalues 4 ,4,,4;,-+ with the degen-
eracies g,, £,, 4, One may write the characteristic polyno-
mial in the form

Flz)=(— 1)"-P2)=|z1— T|

=T] (e — A= (5.1)

Of essential importance now is the expansion of the inverse
of F(z) in terms of partial fractions:

1 — qr (Z) , (52)
Flz) &z — AP
where g, (z) is a polynomial in z of a degree equal to or less
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than (g, — 1), which is easily determined by standard alge-
braic methods. Multiplying (5.2) by F (z), one gets the identity

1=Y g2 —E =% @] lz— A,
k

(z— A% X [k
=5 062 (53)

where
Oy (=g, (2) [] (z —A,F¥ (5.4)
eSS
is a polynomial of a degree equal to or less than (7 — 1),
which may be expressed in the form

O, (2)=da}' +al'z+ a2+ . +ak 27" (5.5)

Because of the relation (5.3), the coefficients @'*' have the
following simple properties:

Sag'=1, Ya¥=0, for r=12.,n—1 (56
k k

Instead of the factor (z — A, -1), we will now introduce the
operator
N, =T -2, (5.7

where we have replaced the complex variable z by the opera-
tor T"and the number 1 by the identity operator /. Instead of
(5.4), we will now counsider the polynomial operator

O (T=g(T) [[ (T — AL F
[k
=a%'] 4+ T+ @ T? + 4 . T,
(5.8)

Using the relations (5.6), one gets immediately
> O (T)=l, (5.9)
k

and we will now show that it represents a “resolution of the
identity” of the type desired.

The operator T satisfies the standard Cayley—Hamilton
theorem, which means that

F(TY=[[ (T — Ax-T)* =0, (5.10)

i.e., F(T)is a zero operator. Combining (5.8) and (5.10), one
gets directly
(T— A T O (T) = O (THT — A L) =0.  (5.11)

Since further the factor (77— A, -I }** is contained in all the
operators O,(T) for | #k, one gets also

O,(T)O,.(T)=0. (5.12)
Multiplying the relation (5.9) to the left by O,(T), one has

O0(T) =3 0(T)0«(T) = O0,(T)0,(T), (5.13)

i.e., the operator O,(7") is an idempotent. According to (5.8),
the operator O, (T') is a polynomial in T, which implies that it
commutes with T:

TO,(T) = O, (T)T. (5.14)

It is now evident that the operators 0,,0,,0,,- form a
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set of mutually exclusive projectors which commute with T
and which form a resolution of the identity. The “product
projection operators” 0,,0,,0;,-- defined by (5.8) represent
hence a solution to the problem stated in the previous section
in the finite case, and they define a sequence of subspaces
V,,V,,Vs,-- which are not only stable under the operator 7’
but also decompose the space.

Each one of the subspaces V,V,,V;,-- is characterized
by an “eigenvalue” A ,1,,4,,--, which is defined as a root to
the characteristic equation P (z) = 0. In the case of a nonde-
generate root, Eq. (5.11) corresponds to an ordinary eigenva-
lue relation of the type (4.38), but in the degenerate case
things are considerably more complicated. It should be ob-
served, however, that—in the case of a general linear opera-
tor T—the relation (5.11) replaces the simple eigenvalue
problem which was characteristic for the self-adjoint and
normal operators. This means also that, even if one has a
resolution of the identity (5.9), there is no simple ““spectral
resolution” of the operator T in the general case.

Connection between the two types of projectors. The pro-
duct projection operator O, (T} defined by (5.8) and its ad-
joint operator look very different from the projectors (4.21)
and (4.22) previously considered, and it may hence be inter-
esting to study the connection between them.

For this purpose, we need some elementary theorems
about projectors P #1 in general satisfying the relation
P’=P.IfX = {X,,X,...,X, ] is a basis for the entire space
A = {x}, then the subspace A, = PA is spanned by the set
X' = PX = {PX,PX,,...PX, |, which is certainly linearly
dependent. However, it may be replaced by a linearly inde-
pendent set X, if one goes through all elements X ; = PX,
in order, and leaves out all elements X ; for which either
X =PX, =0or X} is alinear combination of the preced-
ing elements X ;X 3,...X; . Similarly the subspace
A, =(1 — P)A is spanned by the set X" = (1 — P)X, which
may be replaced by the linearly independent set X,.

For any element x = Xa, one has then the resolution

x=Px+(1—P)x=PXa+ (]l —P)Xa

=Xa, + Xpa,, (5.15)
where the linear dependencies have been removed. This that
the combination (X,X,) forms another basis for the entire
space 4 = {x}. Since further

P(X,,X5) = (X,,0), (5.16)

itis evident that the operator P with respect to this basis has a
matrix of the form

i, 0
po(t ),
(s o

where 1, is a unit matrix of the same order g as the subspace
A, = PA. Hence every projector P may be diagonalized with
the eigenvalues O or 1, and one has

TrP=g, (5.18)
where the integer g gives the order of the range of P. In the
special case when g = 0, one has also P = 0.

Let us now start by considering the product projection
operator O, (T') and its adjoint operator which have the

(5.17)
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ranges V, and V'], respectively. In the following, we will
omit the index & if there is no risk of misunderstanding. The
subspaces ¥ and V' are spanned by the linearly dependent
sets OX and O' X, which are then replaced by the linearly
independent sets f and g, respectively, by using the proce-
dure described above. One has

of=f, O'g=g (5.19)
Since further
TrO=TrO" =g, (5.20)

the subspaces ¥ and VT are of the same order. According to
(4.21) and {4.22), one may now introduce the projectors:

Q = |H)(glf) " (g, (5.21)
Q" = [g)(flg) ~¥f], (5.22)

where Tr @ = Tr Q7 = g. According to (5.19), one has
further O |f) = |f) and (g|O = (O *g| = (g|, which gives

0Q0=00=0. (5.23)
For the difference P = O — (, one gets hence that P2
=024+Q*—00Q—Q0=0—Q=P,and that
Tr P =Tr O — Tr Q = 0. Hence P = 0, which implies

0=0. (5.24)

Hence the product projector operator O (7") and the projector
Q given by (5.21) are different expressions for one and the
same projector.

In the construction above, the sets f and g are obtained
from the basis X by means of the projectors O and O, re-
spectively, independently of each other. Instead of the origi-
nal set g, one may find it convenient to introduce the recipro-
cal set g, = g(f|g) ~! having the property (g, |f) = 1.
According to (4.35) and (4.36), one then has the relations

T¥Y=fT, T'g =gT', {5.25)
where
T=<(g|TIf), (5.26)

as expressions for the stability properties of the sets f and g,
under the operators T and T'!, respectively.

In certain connections, it may be convenient to use a
slightly different approach, in which the linearly indepen-
dent set f is first established and a new set g is then intro-
duced by the formula

g=0"f (5.27)

Since (g|f) = (O f|f) = (f|O |f) = (f|f), the matrix (g|f) is
also nonsingular, and the elements in g are linearly indepen-
dent. For the projector @, one obtains

Q= |0 @If) (8| = IHAH ~(lo=0,0, (5.28)
where O, is the self-adjoint (orthogonal) projector on the

space spanned by the set f. For the reciprocal set g,
= g(f|g) ~ ', one obtains finally

g =0 f(flg) " '=O0'f(fif) . (5.29)
Nilpotent operators. It is interesting to observe that, even if
the relation (5.11) is to be considered as a generalization of
the ordinary eigenvalue problem for g, > 1, it leads to con-
siderations of a rather different type. In treating a specific
stable subspace ¥V, , we will again in the following temporar-
ily omit the index k, if there is no risk for misunderstanding.

78 J. Math. Phys., Vol. 24, No. 1, January 1983

Using the notation (5.7), one may now write (5.11) in the
form

NEf=0, (5.30)

where N = T — A1, for all elements f of the subspace V. If
there exists at least one element £, in ¥V, for which

Ne— £ £0, (5.31)

one says that the operator N is nilpotent of order g within the
subspace V. In such a case, it is convenient to introduce a
sequence of elements f = {f|, £, f3...., f; ] through the recur-
sion formulaf, | = Nf,, i.e,,

fi=Nb =N foor =Ny fo=f, (5.32)
which implies that £, = &%~ "f,. We note particularly that,
according to (5.31), one has f; = N¥ ~ ' £, #0, whereas
Nfi=N¥, = =N¢ f; = 0. The elements in the sequence f
are certainly linearly independent for, if one assumes the
existence of a linear relation

fo =fia, + fro, + fya, =0, (5.33)

and multiplies it successively to the left by N¥— ', N8~ 2
N, one gets a sequence of equations from which one may
conclude that

a, =a w=a,=0, (5.34)

g—1 =
which proves the statement.

Choosing the linearly independent set f as a basis for the
subspace ¥, one has
Nt =N {fi, fores [} = {0, f1s f2rees fg _ 1 }. Thecorrespond-
ing matrix N hence consists of a sequence of 1's in the diag-
onal one step above the main diagonal, whereas all other
elements are vanishing; we note that such matrices are com-
mon in physics as representations of “ladder operators”, and
that &V is a typical step-up operator. One has further
N = {00, 1, for-r f, 2 ], etc., which implies that the se-
quence of subspaces ¥V, V' = NV, V" = NV',... have the or-
dersg,g — 1, g — 2,...,1; the order of the subspace hence
decreases by one unit every time the operator N is applied.
This is an important result which we will use in the following
subsection. Going back to the operator T = N + A/, one has
TE=Af+ {0, f}, forn [ _ 1 }h 1€,

Tfl :/{.fh
Tf‘l Z/{’.f; +fl:

sz = /1f3 +f2:

Tfe =AM +fe1s

(5.35)
which gives the matrix representation
A1 0 0 - - - 0 O
o4 10 . .- .- 00
T= ) (5.36)
0 o A 1
0 0 0 A
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for the operator T in the subspace V with respect to the basis
f. It should be observed that, even if the first relation in (5.35)
is an ordinary eigenvalue problem for the eigenelement f,,
the same function f, occurs also in the line below—hence the
subspace {f;} is stable under T, but it reduces without de-
composing the operator.

In elementary matrix theory, one actually starts from
the fact that—even in the case of a degenerate eigenvalue
A—the eigenvalue problem 7C = AC has at least one solu-
tion C, which then is chosen as the first element of a basis
(C,Y,,Y,...,Y,,). Considering the eigenvalue problem in the
space spanned by the elements (Y,,Y5,...,Y,,) and repeating
the reasoning, one finds another eigenelement C’ associated
with another eigenvalue A ', etc. By repeating the process one
shows that, by means of a proper choice of basis—i.e., by
means of a similarity transformation—every matrix T may
be triangularized to a form in which all the elements below
the main diagonal are identically vanishing, whereas the ele-
ments on the main diagonal may be identified with the eigen-
values as defined by the secular equation P (z) = 0.

Using this theorem, one can now easily show that the

matrix (5.36) representing a Jordan block of order g in accor-
dance with (4.5) cannot be further block-diagonalized. Let us
assume temporarily that it may be transformed into two di-
agonal blocks of order p, and p,, respectively, with p,>p,,
which are subsequently triangularized. Studying the powers
of the matrix N = T — 4.1, one obtains directly that
NP = 0, which means that the operator N is nilpotent of
order p, or less within the entire subspace V, which contra-
dicts the relation (5.31). Hence the Jordan block (5.36) can-
not be further block-diagonalized, and the stable subspace V'
is irreducible.
Segré characteristics. If the relation (5.31) is not fulfilled for
any element f; in V, things are going to be more complicated,
and the space Vis going to turn out to be reducible. To every
element fin the stable subspace ¥ = {f'} defined by the pro-
jector O (T'), one may now assign a specific exponent m(f’) or
index such that:

NI f=0, N -1f£0, (5.37)

where m(f)<g. Starting out from an arbitrary element fand
using the construction of the previous subsection, one can
now construct astable and irreducible subspace V (f) or order
m(f) which is associated with the element £. Such a subspace
V (/) reduces the operator T, and the question now is how the
element f should be chosen so that the subspace ¥ (f) also
decomposes the operator T.

The minimal index m is the smallest number having the
property that N” f = 0O for all elements f of the stable sub-
space V defined by the projector O (T} and—as we will see in
the following—it plays a fundamental role in the theory as
well as in the physical applications.

It would be very nice if one could find a sequence of
elements f, f1;, /i1, in the subspace ¥ so that the irreduci-
ble subspaces V (1), ¥ (fu ) ¥ (111 ), decompose Vin an ex-
haustive way. The orders g;, gi1, 811+ Of these subspaces
are known as the Segré characteristics of the subspace ¥ asso-
ciated with the degenerate eigenvalue A4, and we will now
study the necessary and sufficient conditions for such a de-
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composition.
For this purpose it is convenient to study the sequence
of spaces

V,V'=NV, V"=NV' =NW¥,. (5.38)

having the orders g,g’,g",--. Since the order of an irreducible
subspace V (f) is diminished by one unit every time the opera-
tor Nis applied, it is now easy to find the connection between
the Segré characteristics g;, g11, 8111, and the sequenceg, g,
g”,--. This connection is most easily demonstrated by a cou-
ple of numerical examples.

Let us start by considering a stable subspace V of order
5 having the Segré characteristics (3,2). This gives, for their
contributions to the orders of the subspaces V, V', V",

Contributions to orderof: ¥V, V', V~’
m=3: 3, 2, 1
m=2: 2, 1 ’ (5:39)
5 3 1

i.e., one gets the sequence (5,3,1). Conversely, if one starts
from the following sequence g,g’'.g",...:

(14,8,4,2,1,0) (5.40)
for the orders of the spaces (5.38), one can now easily derive a
necessary condition for the Segré characteristics—provided
that the corresponding subspaces really exist and add up to
V. There is a total of five nonvanishing numbers in the se-
quence (5.40) and, since the space V'® = N *F has the order
zero, the minimal index is m = 5. There should hence exist
at least one irreducible subspace of order m = 5 and, since
g¥ = 1, there is apparently exactly one irreducible subspace
of this order, which contributes the sequence (5,4,3,2,1) to
the sequence (5.40). This gives the difference

Contributions to: v, v, v, v", V"
14, 8, 4, 2, 1
m=75 - 5 4 3, 2, 1
9, 4 1, 0, 0
(5.41)

Here (9,4,1) is a new sequence of numbers corresponding to
m, = 3 and the contributions (3,2,1). Subtracting these con-
tributions, one gets

Contributions to: v, v, V”
9, 4,

-3 2 1’
6, 2, 0

=3 (5.42)

which result indicates that there must be exactly two sub-
spaces having m, = 2, each one with the contributions (2,1).
After subtracting (4,2) one is left with a single number 2,
which corresponds to two subspaces having m, = 1, Re-
membering that the index of each sequence equals the num-
ber of nonvanishing figures and that one should start each
subtraction procedure from the right, one can now write this
decomposition directly in the following way:
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Contributionsto: Vv, V', V", V", V"
m\g 14, 8, 4, 2, 1
5 5 4 3, 2, 1
3 3, 2, 1
2 2, 1 ’
2 2, 1
1 1
1 1
(5.43)

which result shows that the only possible Segré characteris-
tics are represented by the sequence (5,3,2,2,1,1). One can get
the same results by considering the second-order differences:

g 14 8 4 2 1 0
Ag: 6 4 2 1 1

Ag: 2 2 1 0 I’

m= 2 3 4 5

(5.44)

where the last line indicates that there are two subspaces of
order m = 1, two subspaces of order m = 2, one subspace of
order m = 3, and one subspace of order m = 5.

It is easily shown that this theorem about the Segré
characteristics is generally true. Letting s’ denote the num-
ber of irreducible subspaces of order p, one should prove that

s :Azg“’"’ =g(p71) ___2g(pl +g(p+1)_ (5.45)
Observing that g™ = g™ * Y = ... = 0, one has
stm) :g(mf N — A 2g(rn~ li’
s(m - 1) :g(m72) _ zg(m—— 1) —=A Zg(m—Zl,
(5.46)

The remaining part of the proof is provided by induction.
According to the general construction of Segré characteris-
tics, as examplified in the table (5.43), one has

s(k— 1) :g(k—Z) _ zs(k] . 3S(k+1)
_ 4k +2) _,,,_(m+2_k)s(M)
zg(k—Z) — 24 Zg(kflj —34 2glk) __4A2glk+l) — e
=A%k, (5.47)

Here the last step is achieved by using the recursion formulas
for the second-order differences. If E'is the step operator, one
has1=(1 —EP(1 —E}) *=A4%(1 +2E+3E*+ -, 0r
the identity
g(k -2 A Zg(k - 2) + 2A Zg(k ~ 1)
+34°%g% 4 442gk+ D 4o (5.48)

which is the formula needed. Hence the theorem (5.45) is
proven.

Before going into the problem of decomposing the sta-
ble subspace ¥ into irreducible subspaces corresponding to
Jordan blocks, it may be convenient to go into a few more
mathematical details as to the properties of the operators
N,N%N?3,..,N™~'. For this purpose, we will consider a gen-
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eral linear operator M defined on a subspace V of order g,
which is stable under M. If the subspace V is spanned by the
linearly independent set f, one has Mf = fM, where
M = {M,,...,M, } is a quadratic matrix which consists of the
column vectors M,, M.,...,M, . Considering the transformed
set f' = Mf = fM, one has f;, = fM,, and the number of
linearly independent elements f';, in the set " hence equals
the number of linearly independent column vectors M, in
the matrix M. This number is also given by the rank r of the
matrix M.

In elementary matrix theory, one says that a singular
matrix M of order g having a vanishing determinant,
M| = 0, is of rank r if at least one minor to M of order r is
different from zero, whereas all minors of order (r + 1) are
vanishing. In such a case, one has the fundamental theorem
that the equation system

Ma, =0 (5.49)

has exactly (g — #) linearly independent solutions a, for
i=1,2,...,.g — r, which form a rectangular matrix a = {a,,
ay,..,8,_, } of order g X (g — 7). ljuttingf,- = fa,, one may
construct a sequence f = {f;} = fa of (g — #) linearly inde-
pendent elements £, which all have the property

Mf, = Mfa, = fMa, = 0. (5.50)

If a basis for the subspace V is arranged such that it starts
with these elements],. fori = 1,2,...,g — r, one then gets
through the operator M automatically a basis for the space
V' = MV which contains r linearly independent elements.
This theorem is of particular importance in contructing the
basis for the subspace V" = ! = N~V V of order s,
which forms the starting point for the decomposition proce-
dure.

In the following, we will apply some of these results to
the operator sequence M = N,N 2,..,N" ' Starting out
from the relation Nf = fN, it is evident that the sequence

gg.8",..gm 1, {5.51)

which is fundamental in determining the Segré characteris-
tics, corresponds to the ranks of the sequence of matrices

LN,N2. N7~ 1, (5.52)

i.e., to the numbers of linearly independent column vectors
in each one of them. It should be observed that the evalua-
tion of these numbers becomes particularly simple, if the
matrix N has been brought to triangular form from the very
beginning.

Construction of the Jordan projectors. In matrix theory,
the decomposition of a nilpotent matrix N into Jordan
blocks may be carried out by elementary algebraic methods
involving only the handlings of vectors and matrices. Here
we will try a slightly different approach, which adds one
more aspect to the problem.

Let us assume that the stable subspace V' defined by the
product projection operator O (T') has the minimal index m.
This means that, for every element x of the full space
A= {x}, one has N" O (T )x = 0, i.e., the operator relation
N7 O(T) = 0. Since further the operators N and O commute,
one gets

N"O=ON", {5.53)
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as well as the adjoint relation
(NTy"0t = 0ot (N)". (5.54)
This implies that the subspace V' defined by O" has a mini-
mal index m" with respect to O, having the property
m' <m. It may be shown, however, that m" = m and that
the subspace V' hasindeed the same Segré characteristics as
the subspace V. For this purpose, we may now span the space
V' = 0T Abytheset g = O fintroduced by (5.27) or by the
reciprocal set g, = g(f|g) ~' = OTf(f|f) ~'. According to
(5.25), one has the relations

Nf=fN, N'g, =gN',
where N' is the adjoint of the matrix N = (g, [N | /). How-
ever, since the matrices

LNF(NTP,. (NTy ! (5.55)

have the same ranks as the matrices (5.52), the Segré charac-
teristics for the subspace ¥ are the same as those for the
subspace V.

Let us now consider an arbitrary element £, of index m
of the subspace ¥ such that

N"f. =0, N™~'f, #0, (5.56)
and let us further introduce the sequence

=N, fH=N""2f,.,

S =N"" s o =1 (5.57)

in accordance with (5.32). The index s indicates that f; is the
“starting element” for the construction. We recall that the
elements | f, f>,..., f,, } are linearly independent and that
they span the irreducible subspace ¥V { f,) of order m.

By means of the adjoint product projector O, one can
now go from the subspace V¥ to the subspace V' through the
formula ¥ = O Vinaccordance with the relation (5.27). Of
particular interest is the projection

pt zow‘VlmAl),

(m — 1) (5.58)
since it turns out ¥, _,, may be spanned by s linearly
independent elements all having the index m.

For the sake of simplicity, we will start by considering a

single element f, = N ~ ' £, and its projection:
g =0'f. (5.59)
Since (g,| f1) = (OT£i| f1) = (A]Of)) = (fil £1) #0, one

has necessarily g, #0. In addition, we will now introduce the
sequence

&1 =&s> gZ:Nfgh

g =N'g,..8, =N'g,_,, (5.60)
ie.,
& =NT) g, =(NT) 1O, (5.61)
In general, one has
@l fi) = <(N+)kv]0+fl|NM7kf;>
= (fIN" L) = (ALAY #0, (5.62)

and this means that no one of the functions g, for

k = 1,2,...,m can be identically vanishing. In particular, one
hasg,, = (V7)™ ~'g 0, which means that the startin gele-
ment g is of index m.
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It is now easily shown that the matrix A = (g|f) formed
by the sets f and g of order m is nonsingular. Observing that
Of =T, one has
Ay =Gl ) = (AN Otflle_[fs)

=(AINHEDT Yy =8y, (5.63)
which shows that 4, is a function of the difference (k — /)
only. Of course, one has 4,;, = 0, as soon as
m + (k — 1) — 1>m, i.e., whenever kK — />1. This means
that A is a triangular matrix with vanishing elements below
the diagonal having the form

Loy Ty T_o I_ge.
0 ty f_p o

A=] 0 0 ty, I_ppe : (5.64)
: : : : r_y
0 0 0 t,
and that A has the determinant
Al = 1§ = (il f1)5. (5.65)

According to a well-known theorem—see, e.g., Appen-
dix A—such a matrix has an inverse d = A~ ', which is also
triangular and has the property d,; = d, _,. Since the set
= {f1s far-s [on | 18 stable under the operator &, and the set
g = {81,828 | is stable under the operator N7, one can
now expect that the projector

Q= |?)(§|?>7l<§| =k2]fk Yd (g (5.66)

constructed according to (4.21) should decompose the opera-
tor N, i.e., NQ = QN. Observing that Nf, =f, _,, and that
(8/|[N=(N'g/| = (g, |, and that

dy vy =dy,,_, =d,_,,oneobtains that

NQ = Z|fk— i8] = Z'fk Y148

= ;'fk Y, 1 (g = Zlfk Y1 (81 1| = QN,(5.67)

which proves the statement. It is interesting to observe that,
if one introduces the reciprocal basis

g =gflg (5.68)
one has not only the property (g, |f} = 1 but also
N8 =8k (5.69)

We note that the projector Q defined by (5.66) is essentially
characterized by the starting element f;, and that it is some-
times convenient to denote it by the symbol @ (f, ).

In order to proceed, we note that one also has the rela-
tions OQ = QO = Q. That means that the operator

P=0-¢Q (5.70)
hasthepropertyP* =0°+ Q?—0Q0 -Q0=0—-Q =P,
i.e., that P is a projector having the order
Tr P=Tr O — Tr Q = g — m. One has further
QP = PQ = 0, which means that Q and P are mutually ex-
clusive projectors.

In the stable subspace ¥V, = PV, the number of irredu-
cible subspaces of order m has been decreased by one unit in
comparison to V. If s >»2, one should now pick another
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starting element /' of index m out of the subspace ¥, and
repeat the procedure leading to the construction of the new
projector Q {f}). Since the starting element /! satisfied the
relation Pf; = f|, and the operators P and N commute, one
obtains

PQ(f{) = QU OP=Q(f:), (5.71)
which implies that the projectors @ {f, }and Q {f} are mutual-
ly exclusive.

Proceeding in this way, one first exhausts all the linear-
ly independent elements of index m, and then continues with
the elements of index (m — 1), etc. In this way, one obtains a
decomposition of the product projection operator O (T} into
mutually exclusive projectors Q (£, ),Q (£ 1),Q (f7),-, which all
commute with N, and we observe that the Segré characteris-
tics given by the second-order difference (5.45) are of great
help as guidance in this connection.

In concluding this subsection, it should be observed
that the construction of the associated irreducible subspaces
V(f)and V' (g) given above is not particularly elegant, but it
gives at least the associated projector @ and Q' without any
further ado.

Reduced Cayley-Hamilton equation. One of the most
important results in this section is the establishment of the
existence of a minimal index m, for each subspace ¥, de-
fined by a product projection operator O, (T ). From our dis-
cussion, it is evident that m, must be identical to the largest
Segré characteristic associated with the space ¥, . Instead of
the fundamental relations {5.11), one has now

N0, =O,N™ =0, (5.72)

in accordance with (5.53). For self-adjoint and normal opera-
tors, one can actually prove the general theorem that all
m,; = 1, but here we will treat the general case when m, >1.

It is now worthwhile to go back and re-examine the
reasoning which formed the start of this section. Instead of
the characteristic polynomial (5.1), we will here consider the
reduced characteristic polynomial:

Fiz=[]lz - T:)™, (5.73)

where the minimal indices m,, replace the degeneracies g, in
the previous expression. Expanding the inverse of F\(z) in
terms of partial fractions,
1 7 (2)
Fid) Tz — A0
where r, (z) is a specific polynomial in z of a degree equal to or
less than (m, — 1), and introducing the notations

(5.74)

Oe)=r. @[] —A,)™, (5.75)
I's£k
one obtains the algebraic identity
I=Y0 iz) {5.76)
k
The operators
(5.77)

o(T) = rk(T)IH(T’/L'I)’"’
£k
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are polynomials in the operator 7, which apparently satisfy
the identity

SoNT)=1
k

Observing that the operator O\(T') = r, (T ), ., N 7" con-
tains the factor N ™, one gets immediately forl #k
O{(T)0,(T) = 0,(T)OYT) = (5.79)

in accordance with (5.72). Multlplymg the resolution (5.9) to
the left by O {)(T), one hence obtains

OUT) = YT $0,1)) = SOHTIO,T)
{ i

(5.78)

= 0}(T0,(T) = O,(T)OV(T). (5.80)
Using (5.72) once more, one gets further
NPOWT)=0\TIN™ =0, (5.81)
as well as
oTYOMNT)=0 for k #I. (5.82)
Multiplying (5.78) to the left by O (T}, one has also
ONT) =0T [20(1 ] Zom oONT
=0(T)OMNT). (5.83)

The relations (5.82) and (5.83) indicate that the operators
O'N(T) for k = 1,2,3,.- are mutually exclusive projectors
which form a resolution of the identity (5.78). Since further

TO\' = 0{'T, (5.84)

it is evident that the projectors O’ decompose the operator
T in accordance with (4.37). These projectors provide a de-
composition of the full space 4 = {x} into subspace
Vi) = 094, which are stable under the operator 7. Since
further O, ¥{' = V{!! it is clear that the subspaces V! are
going to replace the previously used subspaces V. in our
discussions; in fact, they are identical.

Finally, we note that if the product operator

T)=[IN:
k

works on the identity operator as defined by (5.78), one gets
the result zero, which implies F,(7)X = O for all elements x
in the space 4 = {x}. The relation

(5.85)

F(T)=][(T—Ax-1)™ =0, (5.86)
k

is known as the reduced Cayley—Hamilton equation.

It is interesting to observe that, even if the space
A = {x} is of infinite order, one may still apply most of the
formulas in this subsection as long as the operator T has only
a finite number of eigenvalues A,,4,,4;,-- in the complex
plane with finite minimal indices m,m,,m,,--—even if the
degeneracies themselves, g,,2,,83,++, are infinite. In such a
case, the starting point for the theory is the reduced Cayley—
Hamilton equation (5.86), whereas fundamental projectors
0" are again defined by the relation (5.77).

Many equations in physics may indeed be interpreted as
reduced Cayley—Hamilton equations. If one considers the
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exchangeoperator P, having the property P,/ (1,2) = f(2,1),
it satisfies the relation P3, =1 or

(Pra = I)(Py2 +I) =0, (5-87)

i.e., P, hastheeigenvalued = + lwithm =1,g = «,and
the eigenvalue A = — 1 with m = 1,g = . In many appli-
cations, this approach has been used successfully to treat the
constants of motion® of many-particle systems in the quan-
tum theory of matter.

Summary; the classical canonical form. Let us now try
to summarize the results of this section and compare them
with those previously obtained. We have been studying a
linear space 4 = {x] of finite order n, but the results are also
applicable to the case of a finite order stable subspace of an
infinite Hilbert space. Let us span the space 4 = {x} by a
linearly independent set X = [ X ,X,,X;,....X, } which serves
as a basis, so that one has the expansion theorem

x=YX.a, =Xa. (5.88)

k
One has the metric matrix A = (X|X) with the elements
4A,, = (X ]X,) having the property A" = A. The reciprocal
basis X, = XA ! satisfies the relations

XiX,)=(X,[X)=1,
and X and X, are said to be biorthonormal. The basis
¢ = XA~ "2 satisfies the relation {(@|@) = 1, and it is hence
orthonormal in the ordinary sense; we note that the set ¢ is

self-reciprocal. Multiplying the relation (5.88) to the left by
(X, |, and solving for a, one obtains

a=(X,|x). (5.90)

This means that the expansion theorem may be written in the
form x = X(X, |x) for all x, which gives the operator rela-
tions

I=1X)(X,| = [X)A~ (X
= X, (X, (5.91)
which may be considered as various types of ““‘resolutions of
the identity.”
Let us now consider a pair of adjoint operators Tand 7't
characterized by the relations
TX=XT, T'X=XR, (5.92)

where T and R may be considered as the matrix representa-
tions of Tand 7't with respect to the basis X. IF x = Xa, one
getsdirectly 7x = XTaand 7' x = XRa, so the operators are
fully described by their matrices. Multiplying (5.92) to the
left by (X, | and solving for T and R, respectively, one has

T=(X,|7X), R=(X,|T*X). (5.93)
Using the definition (1.1), one obtains further
R=(X,|TTX) = (XA !|T'X) = A~ (X|TTX)
=A"NTX|X) =A"XT|X) =A"'T'A. (594

If the basis undergoes a linear transformation X’ = Xa, the
matrix T undergoes the similarity transformation

T = a™ 'Ta. Putting X, = XA ™!, one gets directly

R, = ARA™! =T'. Hence, one has

(5.89)

TX =XT, T'X, =X,T', (5.95)
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where T' is the adjoint of the matrix T.

In connection with relation (4.4}, we discussed pre-
viously how a matrix T could be block-diagonalized as far as
ever possible by means of a similarity transformation y. The
answer obtained in this section is well known in matrix the-
ory; every matrix T may first of all be block-diagonalized
after its eigenvalues A4 ,,4,,4,,... and, if the eigenvalue 4 is
nondegenerate, the corresponding block is of order 1 and
consists of the eigenvalue on the diagonal. However, if the
eigenvalue A is degenerate of order g, the corresponding di-
agonal block may be transformed into a sequence of Jordan
blocks of type (4.5), the orders of which are given by the
Segré characteristics. This form A of the matrix is known as
the classical canonical form. Hence one has

v~ 'Ty =4, (5.96)
as well as the adjoint relation
YT Hy') "' =41, (5.97)

where A" has the complex conjugate eigenvalues A ¥ on the
diagonal and the 1’s below instead of above this diagonal.
Many of the relations found in Sec. 2 for operators hav-
ing only distinct eigenvalues may now be extended also to
more general operators. Introducing the eigenbases Cand D
to the operators Tand 7', respectively, through the relation

C=Xy, D=X,(y'), (5.98)
one gets immediately
TC=CA, T'D=DA'. {5.99)

One has further

(DIC) = (X, (¥")"'[Xy) =y X, |[X)y =1, (5.100)
which is a generalization of the biorthonormality theorem. It
is interesting to observe that the set D may be evaluated from

the set C, since D is identical to the reciprocal basis
C, =C(C|C) "

C, = C(C|C) ' = Xy[{(Xy|Xy)] "
= Xy[y" (X|X)y]™"
= Xyy ™ {(XIX)~'(v) !
=X,(‘Y*)_1=D- (5.101)

In Sec. 2, we had further been able to express the resolution
of the identity in form of the second relation (2.22). Here one
gets similarly

|CY(D| = [Xy){X, (vy") |

= X)yy~ (X, |
=[X){X,|=1, (5.102)

as well as the adjoint relation
[DY{C!=1. (5.103)

Letting the operators T'and 7" work on (5.101) and (5.103),
respectively, one obtains
T=|C)A(D|, T'=|D)AT(C|, (5.104)

which are the analogs of the spectral resolutions in the dis-
tinct case. However, because of the existence of degenerate
eigenvalues and Jordan blocks, they are now slightly more
complicated than before.
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In concluding this subsection, we note that by replacing
the eigenvalue problem with the stability problem—or,
which is the same, the diagonalization procedure with the
block-diagonalization procedure—one may be able to gener-
alize most of the fundamental theorems found in Sec. 2 also
to more general operators.

Bivariational principle and the stability problem. So far,
little has been said in the summary about any possible exten-
sions of the bivariational principle of Sec. 3 to the stability
problem formulated in terms of subspaces and projectors. In
order to proceed, we observe® that if a physical system is
described by a system operator I" having the property
I'" = T, then the expectation value of a physical observable
F=F" is given by the expression

(F)o =Tr Fr /Tr I. (5.105)
1In the case of a homogeneous ensemble, one has the auxiliary
condition I'*=ITr I

In studying a general linear operator 7, we will in ana-
logy with (5.105) consider the quantities

IL=TrTC/TrI, L=TcT' /Tt =TI%,

(5.106)
where I" # ' . These expressions are obvious generaliza-
tions of (3.6) for I" = |x,) (x,|x,) ~ '(x,|. In order to connect
the quantities (5.106) with the stability problem, we will now
assume that the general operator is a projector satisfying the
relations

r:=r, Trrr=g. (5.107)
For any variations 61" of the operator I, one gets then the
auxiliary conditions

Sr=rér +o6r-r, rérr=0, Trdl=0,(5108)

where the second relation is obtained from the first by multi-
plying to the left or right by I". For the variation of 1, one
obtains

8I, = (I/Tr T')[Tr TSI — I, Tr 6I'']

=(1/gTe(TC + I'T)I". (5.109)

One would hence perhaps expect that a sufficient condition
that 87, = Ois that 71" + I'T = 0. In reality, this condition
is never fulfilled, since it leads to a contradiction. Instead,
one has the simple condition 77" = I"T since, in such a case,
one has

81, =(2/g) Tr TIST = (2/g) Tr TT 25T

=2/ Tr I'TrSI =(2/g) Te T(r8I'7'y=0. (5.110)
In order to study the necessary conditions that 67, = 0 when
I'? = I, we will multiply the second relation (5.108) by an
operator A—corresponding to the ordinary Lagrangian

multipliers—and take the trace, which gives the auxiliary
condition

Tr ANSITT = Tr(lT'AT')5A = Q. (5.111)
Combining {5.109) and {5.111), one obtains the relation

81, =(1/g)Te(TTC + I'T — T'AT')6I"' =0 (5.112)
for arbitrary variations 61, which leads to the condition

Tr+I'T—TAI=0. (5.113)
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Multiplying this relation to the left by 7" and to the right by
I, respectively, one obtains

I'Tr+I'T=TAr'=7Tr +ri1r, (5.114)

1e.,
Tr=1rT, {5.115)

which is hence a necessary and sufficient condition that
81, = 0 when I"? = I'. This result implies that /" must be a
projector O, which decomposes the operator 7.

The relation (5.115) connects the bivariational principle
81, = O with the stability problem for the operator T, and we
will now look for approximate solutions. Let us assume that,
as in Sec. 3, we have two truncated sets ¢ = {¢,é.,...,0,,, |
and V¥ = { ¢,,¢s,...,,, | of order m at our disposal, and that
the matrix {{|¢) is nonsingular. According to (4.21), one
can then construct a pair of adjoint projectors

0 =[6) (Vo) (U], (5.116)
0" = [h)(d[¥) ~'(al, (5:117)

where the bar indicates that we are dealing with approximate
quantities. In order to study the degree of approximation, it
may be convenient to introduce the difference

w=T0 — 0T, (5.118)
since the quantity
y=Tre w>0 (5.119)

is then non-negative and zero only when the relation
TO = OT is exactly fulfilled. We note that (5.119) is a gener-
alization of the ordinary concept of the “width” of an opera-
tor T.

As before, we will now introduce the reciprocal set

¥, = ¥(d|¥) ' havingthe property ({, [¢) = (b|1,) =1,
which gives
0=16)(V,|, 0" =1|b,) (S| (5.120)

Assuming that the relations 70 = OT and 70t =0* T*
are exactly valid, one gets directly

T1) W, [ = [d) Y, |T, (5.121)

T, ) (o] = [, )(S|T". (5.122)

Multiplying the first to the right by |¢) and the second to the
Light by |, ), respectively, and introducing the notation
T = (¥, |T |d), one obtains

To=6T, T'y, =4,R.
Here, R = ($|T7,) = (To|Y,) = T', as before. Intro-
ducing the matrix y which brings T to classical canonical
form A, one obtains

vy Ty=4 Ty ) '=4%, (5.124)
and introducing the approximate eigenbases C = dvyand
D =, (y") "', one obtains the approximate relations

TC=CA, T'D=DA'. (5.125)
Itis then easily checked that the other fundamental relations
in Sec. 3 are also valid. _ _

We observe finally that the transformation of T and T*

to classical canonical form corresponds to the decomposi-
tion of the projectors O and O into irreducible projectors

(5.123)
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O, decomposing the two operators, so that

5:;@, 5*:;5;. (5.126)

At this stage, one can check the accuracy of each projector
O, by forming the commutators

w, =TO, — 0, T, (5.127)
and by evaluating the quantities
¥e = Trofw, >0. (5.128)

It should be observed, however, that—even if this scheme is
also approximate—it has the great advantage that the ap-
proximate solutions have essentially the same properties as
the exact ones. In certain connections, it may perhaps be
more appropriate to consider the approximate operators

T=0T0 = |$) (¥, [T |d) (W, |

= [6)T(4, |, (5.129)
T'=0"T"0" =, }|T" |V, ) (¢]
= [, )T (], (5.130)
which satisfy the relations
OoT=T0, O'T'=T'0" (5.131)

exactly. This means that the approximate solutions for the
operators T and T previously obtained may be  considered
as exact solutions associated with the operators Tand T 7.

6. COMPLEX CONJUGATE OPERATORS

In this section, we will consider certain aspects which
may be important in the numerical treatment of general lin-
ear operators T. Let us consider a linear space 4 = | x|,
where the elements x represent certain complex functions of
some specified variables, and let the symbol x* represent the
complex conjugate function. Such a space is said to be stable
under complex conjugation if both x and x* belong to the
space.

Let us assume that 4 = {x} has a basis
X = {X,,X,,....X, } of finite order n, and that every element
x may be expressed in the form

x:ZXkak = Xa. (6.1)
k
This gives directly
x* = X*a* = Xa/, (6.2)

where X* = (X ¥, X ¥,....X * ) is the complex conjugate basis,
which may be expressed in terms of the original basis X, so
that

X*=Xa, X=X*a"' (6.3)
This is a rather special type of linear transformation, since
one gets directly X* = X(a '), i.e.,
a*a=1. (6.4)
Since |a|*|a| = 1, the absolute value of the determinant |a|
is hence 1. Combining (6.2) and (6.4), one gets further

a’ = qa*. (6.5)

A somewhat different way of approaching this problem
is to use the identity

a=(a¥),
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X=1X+X*+{X-X¥=, +iD,, (6.6)
and to consider the set {® ,®,} having the elements
Q, =X+ X¥), @,=(1/2)X—X¥), (6.7)

with the property @} = @,, ®¥ = ®,. Starting with the first
element in the set {®,,®,] and leaving out all elements
which are either vanishing or linear combinations of the pre-
ceding elements, one arrives at a sequence ® of linearly inde-
pendent elements which may serve as a basis. Since ® = ®*,
one speaks of a real basis.

It is evident that, if the original space 4 = {x] is stable
under complex conjugation, this construction will not
change the order of the space. On the other hand, if this is not
the case, the sequence {®,,®,} contains twice as many ele-
ments as the original set X and, by introducing the new basis
@, one may hence have increased the order of the space and
extended the original space 4 = {x}, so that the new space
becomes stable under complex conjugation. Instead of (6.1)
and (6.2}, one gets the simpler relations

x =®a, x*=Pa* (6.8}

where the column vector a is different from the one occur-
ring in (6.1). Because of the property expressed by (6.8), the
operation of “‘complex conjugation” is often described as
antilinear.

Irrespective of the properties of the basis, the complex
conjugate operator T * is defined by the relation

T*x = (Tx*)*. (6.9)

Observing that, for the domain of T ¥, one has
D (T*)= {D(T)}*, one gets directly the formulas

(Tya, + Toa,)* = Ta* + T*a*, (6.10)
(T\T,)* =T*T* (T**=T. (6.11)

We note that, because of the special form of the first relation
(6.11), the complex conjugation is nof an involution. In the
case when the operator T'is expressed analytically in terms of
real and imaginary quantities, one obtains the expression for
T* simply by replacing the imaginary unit /by i* = — /. For
instance, for the momentum operator in quantum mechan-
ics
_h 4
2mi Ox’

one has p* = — pas well as p' =p.

For the matrix representation of T *, one gets directly,
by using the definitions,

T*® = (T®)* = (PT)* = OT*.

From the relation ¥ ~'Ty = A, it follows also that
(v*)~'T*y* = A*, where A* has the same classical canonical
form as A with the eigenvalues 4, replaced by 4 * but with
the 1’s of the Jordan block still above the diagonal. Since A
may be obtained from A* simply by permutating the basis
elements of each Jordan block, the operators T and T * are
apparently connected by a similarity transformation. We
note finally that, if OT = TO, one has also O *T* = T *0O *,
i.e., the projectors O * decompose the operator T *.

In relativistic quantum theory, the complex conjuga-
tion is closely associated with the fundamental operation of

(6.12)

(6.13)
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“charge conjugation” and time reversal, but we will study it
here in a more elementary connection.

Special case when T' = T*. In the partitioning tech-
nique as well as in the complex-scaling method, there are
many examples of operators having the special property

T =T* (6.14)
which means that the similarity transformation in the gen-
eral case is replaced by an identity. From the eigenvalue
problems 7C = AC and T' D = uD, one gets directly
T*C* =A *C* whichgivesD = C *foryu = 4 *.Ingeneral,
one has the property

D=C*=C(C|C) !, (6.15)
which is a special case of (6.3). The result implies that
(C|C)*(C|C) =1, (6.16)

in accordance with (6.4), and the absolute value of the deter-
minant |{C|C)| is then equal to 1.

It should be observed that, if one has introduced a real
basis ¢ as well as its reciprocal basis ¢, through the relation

b, =6(dld) ', (6.17)

with the properties (d|b,) = (b, |d) =1, then also the re-
ciprocal basis ¢, is real. One has then the matrix representa-
tions

Té=6T, T*6=6¢T*, T'¢, =6T, (6.18)

where T = (&, | 7] and T' is its adjoint matrix. In the spe-
cial case when T7 = T *, it is convenient to introduce an
orthonormal real basis, e.g., ¢ = &{b|b) ~'/? satisfying the
relations (¢|¢) = 1 and ¢, = ¢. Using (6.18), one obtains
T =T*,ie,

T=T, Ty =Ty, (6.19)

and the matrix T is hence a symmetric matrix with complex
elements. From the numerical point of view, this may be a
simplification since one may have to store only the part of
the matrix { T}, } having k</. A symmetric matrix with real
elements is self-adjoint, of course, and it may hence always
be diagonalized. The same is true for a symmetric matrix
with complex elements, if the eigenvalues A, are distinct. It
should be observed, however, that—in the case of degenerate
eigenvalues—it is necessary to apply the full theory of the
linear operators and the description of the degeneracy in
terms of Jordan blocks and Segré characteristics.

7. CONCLUDING REMARKS

In this paper we have concentrated our interest in the
study of the stability problem for a pair of adjoint operators
on such problems which are simple to hand and which may
still lead to a deeper understanding of the more complicated
general ones. It should be remembered, however, that even
in these simple cases there is still a great deal of work to be
done from the point of view of numerical analysis and actual
computations. Most of our attention has, so far, been devot-
ed to the study of the classical canonical form of operators
defined of finite linear spaces and the associated projectors.

The treatment of general linear operators on an infinite
space is a difficult problem and, even if many important re-
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sults have been obtained by the mathematicians,’ most of
them are rather technical in nature and are hard to handle in
the practical applications carried out by theoretical physi-
cists and quantum chemists. Hence it seems desirable to go
over these problems also from the practical point of view.

It should be observed that there is at least one series of
results in this paper, which are easily generalized also to
infinite spaces and which have already been successfully ap-
plied, in the treatment of the “constants of motion.”® This
depends on the fact that some of the results in Sec. 5, which
were based on the reduced Cayley—Hamilton equation (5.86)
to construct a resolution of the identity (5.78) in terms of
product projection operators (5.79), may be applied also to
infinite spaces as long as the number of eigenvalues A, stays
finite and each one of them has a finite minimal index m,
corresponding to the largest Segré characteristic. In such a
case, the product projection operators O | split the Hilbert
space into a finite number of stable subspaces ¥, —each one
of infinite order g, = .

If the number of eigenvalues A, in the complex plane
becomes infinite, the spectrum may become very complicat-
ed and may contain several continuous portions. However,
as long as the minimal indices m, remain finite, the problem
can be handled at least in principle. Of course, one has con-
vergence problems in treating the infinite products associat-
ed with F\(z) and O {{(z), but these can be overcome by intro-
ducing the same convergence factors as occur in Weierstrass’
and Mittag-Leffler’s theorems about integer analytic func-
tions. So far, little research has been done in this area.

In constructing the meromorphic function 1/F,(z) hav-
ing poles of order m, in the points z = A, one may again
obtain some guidance from the case of a finite space. Starting
from the generalized spectral resolution 7' = |C) A(D| ex-
pressed by the first relation (5.104), one obtains the following
resolution of the resolvent:

R=(z1-T)"=|C)z1—A)" (D], (7.1)
where A is the classical canonical form which is block-dia-
gonalized in terms of Jordan blocks of the type (5.36). Con-
sidering a specific diagonal block of the matrix (z-1 — &) of
order m, associated with the eigenvalue 4, , one obtains by
using the matrices in Appendix A, Eq. (A2)

21— A1 —j) '=lz—A)1—j]"

=(z—A) "1+ (2= A7

A A e = A M e (1)
i.e., a finite expression containing exactly m, terms. Taking
two arbitrary elements ¢, and @, of the Hilbert space, one
may instead consider the auxiliary function

(@R @) = (@illz] — T) " 'ga)

= {(,|C)z1 —A)” (Dig,) (7.3)
in the form of a binary product. In general this is a meromor-
phic function of the complex variable z with poles of the
order m, in the points z = 4, , which relates it to the func-
tion 1/F,(z). In such a case the coefficients of (z — A, ) 7
may be determined by carrying out the limiting procedure

z—A, properly. In practice, it may be easier to handle this
problem by means of the partitioning technique,® which
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from many points of view seems well suited also for handling
the case of infinite spaces. This problem will be further treat-
ed in a forthcoming paper.
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APPENDIX A: DERIVATION OF THE INVERSE OF A
TRIANGULAR MATRIX OF A CERTAIN TYPE

In studying the properties of a specific triangular ma-
trix A of the form (5.64) having the properties

4, =0, for kxI+1,
Ak/ :tk—-l’ fOr kél, (Al)

it is convenient to introduce the sequence of matrices of or-
der m:

0 1 0 0 O 0 0 1 0 O

0 01 0 O 0 0 01 O
h=]0 0 0 1 O , =10 0 0 0 1

0 0 0 0 1 6 0 0 0 O

0 0 0 1 0O
. 0 0 0 O .
= 00 0 0 _pete (A2)

where j, consists of a diagonal of 1’s p steps above the main
diagonal. One has directly the connections

B =i, ir=0. (A3)
Starting from (5.64), one obtains the expansion

for p<m — 1,
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A=tel+1_pji+ i o+ 4t ym—1s (A4
and this gives for the inverse

m—1 -1
dzA_l=toﬁl{l+ z (t;k/to)jlk]

k=1
m—1 m—1 1
S LRI BV | T
=1 k=1
It is evident that the last expression may be rearranged into
powers of the matrix j,, and hence this gives an expansion of
the form
d=dyl+d_;ji+d i+ +d_p_nim_1-(A6)
This means that d is also a triangular matrix having the pro-
perties
d, =0, for kxI+1,
d,=d,_,;, for k<l (A7)
Once this result is established, it may be simpler to get the

coefficients d _, recursively by using the relation dA =1,
ie.,

1 = dA = doto'l + (d—lt() + dot—l)jl

+d_ato+d_yt_y +dot_o)ir+ (A8)
which gives
dyto =1,
d_jto+dy_, =0,
d_to+d_jt_,+dy_,=0. (A9)

The essential property of the inverse d = A~ ! used-in Sec. 5
is given by relation (A7).

'See, e.g., P. O. Lowdin, Int. J. Quantum Chem. 12, 197 (1977), particularly
p. 235.

?See, e.g., P. O. Lowdin, Advances in Quantum Chemistry {Academic, New
York, 1980}, Vol. 12, p. 263 (particularly pp. 298-306); Phys. Scripta 21,
229 (1980).

*For general references on “‘complex scaling,” see special workshop issue in
Int. J. Quantum Chem. 14, 343-542 (1978).

“E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930).

SP. O. Léwdin, Phys. Rev. 27, 1509 (1955); Rev. Mod. Phys. 34, 80 (1962);
34, 520 (1962); 36, 966 (1964).

°P. 0. Lowdin, Int. J. Quantum Chem. 12, 197 (1977); 21, 275 (1982).

"See, e.g., N. Dunford and I. T. Schwartz, Linear Operators, Part IIT (Wi-
ley-Interscience, New York, 1971).

8See Ref. 2.
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On the Hartree-Fock scheme for a pair of adjoint operators
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A generalization of the Hartree-Fock scheme for an arbitrary linear operator—and its adjoint—
is derived by using the bivariational principle. It is shown that, if the system operator in the
transition value is approximated by two Slater determinants, it is determined by a projector p,
which corresponds to a generalization of the conventional Fock-Dirac density matrix, but which
is no longer self-adjoint. The effective one-particle operator then takes the same form as in the
conventional theory. The solution of the stability problem for a pair of adjoint effective operators
is finally discussed. Numerical applications are performed elsewhere.

PACS numbers: 03.65. — w

1. INTRODUCTION

In the quantum theory of matter, the Hartree-Fock
scheme corresponding to the independent-particle model is
one of the standard methods for deriving approximate eigen-
functions and eigenvalues to self-adjoint operators—par-
ticularly to the Hamiltonian. During the last decades, there
has also been an increasing interest in general linear opera-
tors T—defined on a Hilbert space § = {f| having a binary
product { f|g)—which are neither self-adjoint nor normal.
They are of interest as a mathematical tool in the theory as
well as in the physical applications, for instance, in the par-
tioning technique' or in the complex scaling method.”

Such an operator 7" having the domain D (7") has an ad-
joint 7T —with the domain D(7"" }—defined through the re-
lation

(fI1Tg) =(T'flg) (1.1)
for every pair ( £, g) belonging to the proper domains D (T'")
and D (T ), respectively. The stability problem for such a pair
of adjoint operators—7 and 7" —has been discussed in an-
other paper.® For the sake of simplicity, we will here concen-
trate our interest on the eigenvalue problem, which takes the
form

TC, =A,C,, T'D,=u,D, (1.2)

where u;, = A ¥. According to the general theory, one has
further the biorthogonality theorem: (D,|C, ) = 0 for

U, #A ¥, which may be combined with a normalization con-
dition (D, |C, ) = 1 to the biorthonormality relation

<D1|Ck)=‘51k~ (1-3)

The question is now whether the Hartree—-Fock method may
be extended also to a general linear many-particle operator 77
of the form

T=To+DT, + 3Ty + -~ (1.4)
7 i<
i.e., whether one can approximate the eigenfunctions C, and
D, in (1.2) by single Slater determinants built up from one-
particle functions or spin orbitals in a meaningful way. In
connection with the complex-scaling method, one of us
(P.F.)} worked out a spin-orbital treatment of this problem
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based on the bivariational principle. However, once the solu-
tion was found, it turned out that a much simpler and more
transparent derivation could be obtained in terms of density
matrices. Only this derivation will be described here.

2. OPERATORS 7 WITH DISTINCT PURE POINT
SPECTRA

The bivariational principle
In the study of general linear operators 7, the bivaria-

tion principle® plays a fundamental role. One starts by con-
sidering a so-called “transition value”:
(T, = {2T 1))
(D, D))
where @, and @, are arbitrary trial wave functions having
the property (®,|®,) #0. In Dirac’s nomenclature,* the bi-
nary product or the bracket { f|g) is the product of a bra-
vector ( f| and a ket-vector |g). In the following, we will
often use ket—bra operators w = |g) ( /| defined through the
relations

o= g){fl, oh=g(flh), (2:2)
for all elements 4 in . They satisfy the reduced characteris-
ticequationw[w — ( f|g) - 1] = 0, and they have the proper-
ties

o' =)l Tro={(flg). (2.3)
For the system operator I"in (2.1), one obtains in this formal-
ism the explicit expression

=Tr TT, (2.1)

Ir— |<p1)(¢2}. (2.4)
(P,|2))
It is then evident that the operator I” has the properties
r*=r,Tctr=1,r+r", (2.5)

i.e., I is a one-dimensional projector which is not self-ad-
joint unless @, and @, are proportional, i.e., are related by a
complex constant. The ranges of I"and I"" are the one-di-
mensional linear manifolds {®, - a} and {®, - B}, respec-
tively.

The bivariational principle® says that the first-order
variation of the transition value (2.1) is vanishing:
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5T),=0, (2.6)

if @, and @, are varied around the eigenfunctions C, and
D, , and vice versa, which means that the relation (2.6) is
equivalent to the two eigenvalue relations (1.2). In the more
general case—also including degenerate eigenvalues—the
bivariational principle (2.6) is equivalent to the commutation
relation

Tr=1IT, (2.7)

where I is a projector of the same order as the degeneracy.
For the sake of simplicity, we will consider here only nonde-
generate eigenvalues.

Construction of the system operator I” from Slater
determinants

In the Hartree-Fock scheme, the trial functions &, and
@, are assumed to be single Slater determinants built up
from one-particle functions, i.e.,

DX )= (N)7'2 [ (x;)],

(2.8

DX ) = (N)™"|ilx;)l,
where X = (x,, X5,...,X») and x; = (r,,4;) is the combined
space-spin coordinate of the ith particle, whereas the indices

jandjgofrom 1to NV. The determinants are built from linear-
ly independent one-particle functions or spinorbitals:

b= {¥} = {¥, ¥ SYn s
(2.9)

e={o}) =leo @ ont
where the indices & and / go from 1 to N. The two sets ¢ and
¢ span the linear manifolds .#, and .# _, respectively. We
note that, if the sets ¥ and ¢ undergo nonsingular linear
transformations:

vV =vba, ¢ =¢B, (2.10)
the determinants (2.8) are changed only by the constant fac-
tors |a| and |B, respectively, as in the ordinary Hartree—
Fock scheme.

The derivations in the following follow closely similar
derivations given by one of the authors in a study of the
ordinary Hartree-Fock scheme formulated in terms of den-
sity matrices.” One of the key quantities in the bivariational
principle is the overlap integral (®,|®,) between the Slater
determinants (2.8). Using the antisymmetric projector

1 P
Ous = ﬁ;( — 1)#P, (2.11)

having the properties O {5 = 0,5 and 035 = 0,,, and in-
troducing the overlap integral

due = @ilthe) = [ b e i, 2.12)

one obtains in the standard way

<¢2|¢1> = (N0, s@i(x)) - - - PnxN)O4sti(xy) - - - Unlxy))
= (N!){@,(x,)- - '¢N(XN)|OAS|¢1(X1)' ~Pnlxn)

= 3= [ette -
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X@ Ny )Pethiix) - Ynlxyldx,. - dxy
= S 17t -
X@¥XNP Wy (X)) -y, (Xy)dx) - dxy
= S DR ) alb -l )

= E( ~- NP ldlk,dzkz' cdyy, = |dy | = |d|,
P

(2.13)

where |d| is the determinant of the overlap matrixd = {d, }.
Here and in the following, we will use the same notation { | )
for the binary product in the N -particle space and in the one-
particle space, if there is no risk of misunderstanding. One
should only remember that the symbol | ) indicates that
one should integrate over the space coordinates and sum
over the spin coordinates.

Since the bivariational principle requests the condition
(@,]|@,) = |d| #0, the matrix d must be nonsingular. We
note that this condition is fulfilled provided that there is no
element in M, (except the zero element) which is orthogonal
to the entire space M.

Using the law of determinant multiplication,
|A-B|=]A|-|B|and |C|”' = |C™'|, one can now easily
find an expression for the system operator I” defined by (2.4)
and (2.8):

o 248 1 D] (o]
(D,|®)  N! |d|
1 i
=mlt¢>1'ld [[<el]
— |l = 2 lel, (2.14)
where
p=P)d (gl (2.15)

This operator derivation in terms of “bold symbols” is very
short and condensed—perhaps too condensed. If one instead
considers the associated kernel or “density matrix” I" (X | X ')
one obtains similarly

ruix - 2E@K)
T (®,)0)
_ 1 [l - e ¥
N d]
B % PACATR (G MR EA]
1 N . .y
Zm k,12:1¢k(Xi)(d )kI‘PI(xj}
= % lolx:, X)), (2.16)
where
pixn X)= 3 Y lxNd e Fx)) 2.17)

kiI=1

is the kernel of the one-particle operator p defined by (2.15).
Using (2.15) and the fact that (@|¥) = d, one gets immedi-
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ately the relations

p’=p, Trp=N, p#p'. (2.18)
It is evident that p and p' are projectors defined on the one-
particle Hilbert space 7, having the ranges M,, and M_,
respectively. Writing (2.15) and its adjoint in the form

=) (el el (2.19)
ph=le) (¥le) ' (W], (2.20)

it is clear that the operators p and p' are N-dimensional

projectors of a general type discussed in a previous paper.® If
the basic sets ¥ and ¢ undergo nonsingular linear transfor-
mations according to (2.10), these projectors stay invariant:

p=p ©V=p" (2:21)
Everything is hence essentially the same as in the ordinary
Hartree-Fock scheme, except that the projector p is no long-
er self-adjoint.

As in the conventional theory,’ it is now possible to

derive the reduced density matrices I" (x;, X, . . ., 5|

X3, X3, - . .x,) of lower order by successive trace formation:
F(XI, X2 .- '»xp|x;’x£’ T rx;,:)
N
:(p fl’(x‘,xz,...,xp,xpﬂ,...,lex;,xg,u.,
XpXp 1s e X)X, L dXy. (2.22)

Starting from the density matrix of order N given by (2.16),
1e.,

(x|, Xy oo Xp X0, X5, 000 XN)

= (I/Nl)|p{x;, x7 )|, (2.23)
expanding the determinant of order N in the right-hand
member after its last column, putting x, == x,, integrating
over x, using (2.18), and multiplying by the factor ¥ ac-
cording to (2.22), one obtains the reduced density matrix of
order (N — 1). Repeating this procedure according to for-
mula (2.22), one gets for the reduced density matrix of order

p

1
r'x,,.. X |x1, .. .,xl’,) = F|p(x’., xj')|, (2.24)
where the determinant is of order p and the indices / andj go
from 1 to p. For p = 2, one gets particularly
1 |plxi x1) plxy, x3)

I ixy, xp|xix3) = —
(i %2l x1%3) 2 |plxy, x7) plxa, X3)

=41 — Pplplx,, x{)plxz X3 ), (2.25)

where P, is the exchange operator which changes x, into x,
and x, intox,, sothat P,, f (x,, x,) = f(x,, x,). Forp = 1, one
gets finally

{2.26)
All the reduced density matrices are hence determined by
the one-particle projector p, and this fact renders a great
simplification of the structure of the theory.

Using (1.4) and the theory of reduced density matrices,’
one gets further for the transition value (2.1) of the operator
r

L(x,|x7) = plx,, x{)-
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(T, =Ty, +fT1r(x1|x;)dx,
+ JTIZF(xl lexixé)dxl dx,
=Ty + fT, pls x3) dx,

1 J—
+ 7an;a(xhx;»o(xz, x3) dx, dx,, (2.27)

where
_le =Tl — Py (2.28)
We have further used the standard convention that the oper-

ators T, Ty,, T,,, - - - work only on the unprimed coordi-
nates and that one puts x; = x,, X; = x, before the integra-

tion.

Derivation of the bivariational Hartree-Fock equations

In applying the bivariational principle (2.6), one should
now vary the trial wave functions @,, and @, defined by
{2.8). This may be accomplished by varying the sets
¥ = {¢, } and ¢ = {@,} subject to the condition
{d| = |{¢|¥) | #0, or simply by varying the associated den-
sity operator p given by (2.15) which satisfies automatically
the conditions p*> = p, Tr p = N according to (2.18). For the
variations 8 p this gives the auxiliary conditions

Sp=pbp+8p-p;, Tr(dp) =0. (2.29)

Multiplying the first relation on the left (or on the right) by p,
one obtains directly

p-8p-p=0, {2.30)

which means that the projection of § p within the subspace of
p must necessarily be vanishing. This implies also that the
second relation (2.29) follows from the first, since one has

Trdp=Tr(p-6p+6p-p)
=Tr(p*-8p+8p-p’)
=2Tr(p-8p-p)=0. (2.31)

This could be expected, since the relation p = p® implies that
Tr p must be an integer which cannot be continuously
changed from one value to another. Using (2.27), one now
obtains

KT),= le b plxy, x7) dx,

1 (=
+— [Tl ot bt x0)
+plxy, X)6 p (x2, x3) ] dx, dx,
= f{Tn + J-_lep(xzr x3) dx,}6 plx,, x7) dx,

- f Tor(16 plx,, x{ hdx, = Tt Togbp =0,
(2.32)
where

Tqll)=T, + delezP(xb x3). 2.33)

In the derivation, we have used the fact that the integra-
tion variables x, and x, are “dummy variables”, the names of
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which may be interchanged. We note that T_;(1) is an effec-
tive one-particle operator which depends only on p and which
is hence invariant under the linear transformations (2.10). So
far, everything is analogous with the conventional Hartree—
Fock theory,® except that—since p#p* —the effective one-
particle operator T (1) is no longer self-adjoint:

Toe()# T (1) (2.34)

Let us now study the meaning of the relation

5T),=TrT:6p=0. (2.35)
Using (2.29) and (2.30), one obtains

p-8p-p=0, (1—p)-6p-(1—p)=0,  (236)

which means that 6 p has vanishing components in the sub-
spaces defined by the projectors p and p’ = 1 — p, respec-
tively. It is hence convenient to study a variation of the form

Sp=(1-pip+pA)l—p) (2.37)
where A, and A, are two general linear variational opera-
tors, which can be made arbitrarily small. It is interesting to
observe that, in this case, the two relations (2.29) are automa-
tically fulfilled, i.e., one has

pép+bp-p=bp, Trdp=0, (2.38)

and that (2.37) is obviously the most general form one can
give the variation § p. Substituting (2.37) into (2.35), ofie ob-
tains directly

TrTeb6p=Tr{Ts(l —p)Ap
+ TeepAs(l — p)}
=Tr{pTg(l —plA, + (1 — p)TzpA,} =0,
(2.39)

for arbitrary variational operators A, and A,. Such arelation
is valid if and only if

PTa(1—p)=0, (1—p)Tqp=0, (2.40)
ie.,

pTeﬂ' =pTcﬁ'p’ Teﬂ‘p=pTcﬂ'p’ (2‘41)
which implies that

Towp =pTer. (2.42)

This relation is hence the necessary and sufficient condition
for the fulfillment of the variational principle in determinan-
tal approximation. This condition implies that the projector
p decomposes the effective operator T, but, since this oper-
ator according to (2.33) depends on p, one is evidently faced
with a nonlinear problem. Taking the adjoint of the operator
relation (2.42), one obtains further

P Tl = Thep', (2.43)

which means that the adjoint projector p* reduces the ad-
joint effective operator T [;.

For the projectors p and p', we will now use the expres-
sions (2.19) and (2.20). Observing that p = Y and p’ ¢ = ¢,
one may now write the relations (2.42) and (2.43) in the form

Teb=pTad=|P){(@lb) @|Tx ),
Thhe=p'Tle=¢) (@) (YT |e).

(2.44)
(2.45)
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Introducing the notations
b, = (@|¥) (@[T ), (2.46)

h, = (Y|@) (V| T s |@), (2:47)

one may hence write the conditions for the fulfillment of the
bivariational principle (2.6) in the special form

Tab=1vh, Tlpe=e¢h, (2.48)
They are generalizations of the conventional Hartree—Fock
equations, where h, and h, are the matrices formed by the
“Lagrangian multipliers”. They represent, of course, the sta-
bility relations indicating that the sets 1) and ¢ are stable
under the operators T.; and T [, respectively.

Structure of the Hartree-Fock equations

Itis evident from the derivation that, if the two relations
(2.48) are to have any meaning, it is necessary to treat the two
operators T.; and T'!; independently of each other. In this
subsection we will show, however, that there is still a certain
coupling between the two equations and their solutions.

Let us first start by considering the first relation (2.48).
According to elementary matrix theory, there always exists
a similarity transformation s, which will bring the matrix h,
to classical canonical form A |:

sy 'hys,=A, h =s A s " (2.49)

Introducing the canonical spin orbitals {’ through the trans-
formation

V=1s, (2.50)
one gets directly T,q ¥’ = T.qs, =P h,; s, =¢'s; 'h; s,
=Y A, ie,

Tl =¥ 4, (2.51)

which is a generalization of the canonical Hartree-Fock
equations. It is important to observe that T4 is invariant
under the transformation (2.50). If the diagonal elements in
A, are distinct, the classical canonical form is necessarily
diagonal, but—if they are degenerate—there may be Jordan
blocks of order m = 2 and higher which are ultimately de-
scribed by the so-called Segré characteristics, depending on
the fact that the operator T is neither self-adjoint nor nor-
mal.

According to (2.46)—(2.49), one gets for the matrix h,

h, = (bj@) (| T Iz @)
= (Y|} " Tzdle)
= (bl@) ~"(v h,|¢)
= ($|e) ~'h] (V|e)
= (ble) ~'(s]) 7' AL s} (W), (2.52)
and this implies that h, may be brought to the special form
A" by means of a similarity transformation:

s; = (@) 7'(s]) ' = [s] (Pl ' = (W) .
(2.53)

It should be observed that A is not a proper classical canoni-
cal form—since it consists of Jordan blocks of so-called sec-
ond type—but that it can be brought to such a form by per-
muting the basic elements associated with each Jordan
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block. However, for our purpose, the special form AT ismore
convenient. Introducing the functions

@' = s, = @) " (s]) 7, (2.54)
the second relation (2.48) takes the form
The' =¢Al (2.55)
This also leads to the relation
(@'[V) =sl{¢|P)s,
=s; (@|) (el s, =1, (2.56)

which shows that the “canonical”’solutions ¢’ and 1" are
automatically going to be biorthonormal once s, has been
evaluated and s, has been determined through the relation
(2.53).

3.SOLUTION OF THE HARTREE-FOCK EQUATIONS BY
MEANS OF EXPANSION METHODS

In the self-adjoint case, the Hartree—Fock equations are
often conveniently solved by expansion methods.® For the
treatment of a pair of adjoint operators, 7.; and T s, we will
here use a generalization of a special technique developed
previously for the conventional case.®

Writing the Hartree-Fock equation (2.51) and (2.55) in
the form

Tab=14, Tlop=¢A], (3.1)
we observe that—even in the case of degenerate eigenval-
ues—they represent stability problems of the type treated in
a previous paper.® According to the general theory, such
stability problems are solved by looking for a pair of projec-
tors, Q and Q%, which decompose the operators 7.; and
T !+, respectively, so that

TeQ=0Tq, TLQ'=0"T, (3-2)
where the second relation is the adjoint of the first. Once
such projectors are determined, they should further be de-
composed into irreducible components, which leads to a
complete solution of the stability problem (3.1). The rela-
tions (3.2) are again equivalent with the bivariational princi-
ple (2.6) for the effective operators, and this fact is particular-
ly useful in deriving approximate solutions.

In order to treat this problem in greater detail, we will
now introduce two sets ® = {@,, @, . . .,P,,} and ¥ = {1,
Wy, . . ¥, }, each consisting of M linearly independent ele-
ments, where V<M. We will further assume that there is no
element in the subspace spanned by ¥ which is orthogonal to
all the elements in ®, which means that the matrix

A= (®|W¥) (3.3)

should be nonsingular. In principle, it should be possible to
let M— o, and to make the two sets © and ¥ complete.
Under such assumptions, there exists® a pair of adjoint pro-
jectors

Q= |¥)(®|¥) (P, (3.4)
0f = |®)(¥|®) (¥, (3.5)

having the property Tr @ = Tr Q T=m Forming the dif-
ference

0=T40Q— QTe, (3-6)
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we realize that the quantity,
y=Tro' w>0, (3.7)

is nonnegative and zero only when @ = 0, i.e., when Q de-
composes the operator T ;. The quantity (3.7), which is a
generalization of the concept of the “width” of an operator,
is hence a convenient measure of the degree of approxima-
tion introduced into the theory by the choice of the two sets
® and V.

The two projectors (3.4) and (3.5) are, of course, invar-
iant under linear transformations of the type

O = da, ¥V =B, (3.8)

where a and B are nonsingular matrices of order M X M.
Introducing the reciprocal set

D, = OV D), (3.9)
which has the biorthonormality property

(V@) =(D,|¥) =1, (3.10)
one gets particularly
Q= ¥)(®,|, Q" =1D,)(¥|. (3.11)

We will now assume that the relations (3.2) are approximate-
ly valid for the projectors Q and @7, so that

TwQ=QT, T4HQ'=Q'Tl (3.12)
or

T [¥)(®, | = W) (@, | T,y (3.13)

Tie|®,) (¥|=|®,)(¥| Ty (3.14)

Multiplying the first relation on the right by |¥) and the
second on the right by |®, |), one obtains

TV =W(D, T, |¥)=Vt, (3.15)

Tzﬁd)r:d>r<w|TZﬁ’|q)r> =®, t,, (3.16)
where t, = (®,|7,,|¥) and t, = (¥|T 5 |®,)
=(T,V|®,) =(D,|T,.¥)' =t
Hence, one has the approximate relations

TaVW=V¥t, T;0 =D t, (3.17)

which become exact only when the subspaces spanned by ¥
and @, are stable under the operators T, and T}, respec-
tively. A more detailed investigation shows, however, that
these approximations may be justified by the bivariational
principle, and we will return to this problem in a later sub-
section.

In order to decompose the projector @ into its irreduci-
ble components, we will now transform the matrix t, of order
M X M to classical canonical form A, by means of the simi-
larity transformation S;:

SIS =A, =S A, S " (3.18}
Taking the adjoint relations, one obtains
ST t{(S]) "= Al t{ =(S]) "'AT S|, (3.19)

which show that t, = t} is transformed to pseudoclassical-
canonical form A% by the similarity transformation
S, = (ST) ' Introducing the canonical orbitals

v -W¥S, ®=08== S, (3.20)
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one obtains

T VWV =WA, T, 0 =0 Al (3.21)
We note also that the canonical orbitals have the biorthonor-
mality property

(P|e) =1 (®|¥)=1. (3.22)
This means that, for the projectors Qand @1, one obtains the
decompositions

Q= [¥)(®|
M M
= 2 F'Z291C 24 > O, (3.23)
k=1 k=1
Q" =o'V
M M
= 3 [®iN¥il= Y 0], (3.24)
k=1 k=1
where the operators
O, = |¥.)(PLl,
0 =P (¥;| (3.25)

are one-dimensional projectors, which are (exactly or ap-
proximately) stable under the effective operators T, and
T!:, respectively, only when they are associated with dis-
tinct eigenvalues or with degenerate eigenvalues having sim-
ple Jordan blocks of order m = 1. If a Jordan block (/) is of
higher order, there are several indices & associated with the
block, and one obtains instead for the irreducible projectors
Q and Q} corresponding to the block

) )

Oc= 300 Qk=30L
k

where one sums over all indices coupled to J . Instead of
{3.23) and (3.24), one obtains the following decompositions
into irreducible projectors

0=3 00 Q'=3 0k
K

where the summation goes over all Jordan blocks.

(3.26)

(3.27)

Selection of the essential solutions

So far, we have neglected the fact that the effective oper-
ator T, according to (2.33) depends on the projector p:

Tal) =T, + [ de, Toll = Pubole x3), (328)
which means that, in reality, one is dealing with a nonlinear
problem. In conventional Hartree-Fock theory, this diffi-
culty is circumvented by the well-known self-consistent-
field (SCF) procedure which is an iterative procedure of the
first order. Extending this approach to the more general case
treated here, one would start from an initial approximation
p© to the projector p. Solving the Hartree-Fock equations
(3.1) for the associated effective operator Ty} formed ac-
cording to (3.28), one then obtains a new approximation p'"
to the projector p which may serve as a new starting point. In

this way, one obtains a series of approximations p'%, p', p%,
p®, - - which are defined through the cycle
PN T . (3.29)
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Under favorable circumstances, this interaction procedure is
convergent and leads to self-consistent solutions. It should
be observed, however, that even if the process is divergent, it
is often possible to use it to construct modified iteration pro-
cedures which are convergent. Similarly, one may often con-
vert slowly convergent procedures into rapidly convergent
ones.

There is one problem in this procedure which should
now be discussed in greater detail. In solving the Hartree—
Fock equations (3.21), one obtains a total of M canonical
solutions, ¥’ and @', which then should be divided into two
groups: the N essential spin orbitals W. and ®_, entering
into the next approximation of the projectors p and p* to be
denoted by ¢ and ¢, respectively,

g= W VL] ¢ =[P (VL] (3.30)

and the {M-N) virtual spin orbitals, which have no direct
physical significance but which may still be mathematically
useful in the treatment of the original eigenvalue problem
(1.2).

In the conventional Hartree-Fock method for studying the
ground state of an atomic, molecular, or solid-state system,
one intuitively selects the essential spin orbitals by taking the
canonical solutions associated with the lowest one-particle
energies. Even if this is physically reasonable and corre-
sponds to the famous “Aufbau-principle,” there is—as far as
we know-—no mathematical proof that this is the correct
way to carry out the iteration procedure.

In the general case, the situation is more complicated—
partly due to the fact that the one-particle eigenvalues may
now be complex and without special ordering. In this case,
however, our problem is more mathematical than physical,
and we may concentrate our interest on the iteration cycle
(3.29).

Starting from the projector p'” and its adjoint, we will
now consider the nth step of (3.29) where the solution of the
Hartree-Fock equations (3.21) leads to the canonical solu-
tions

\I,l(n +1) {¢'(n + 1}}’

i

eri= (e (33

foru, v =1,2,3,...,M. For the sake of brevity, we will in the
following leave out the superscripts # and (n + 1), if there is
no risk for misunderstanding. It is now convenient to consid-
er a canonical solution ¥ |, as essential if it is mainly situated
within the subspace of p so that—at least approximately—

one has

p¥L =V (3.32)

If, on the other hand, the solution ¥, is mainly situated
outside the subspace of p, so thatp ¥, =0, the solution ¥, is
considered as virtual. In the physical interpretation of this
scheme, the essential spin orbitals are considered as occu-
pied by particles, whereas the virtual spin orbitals are unoc-
cupied. In order to treat this classification systematically,
one may study the numbers

=(¥.l—p—p" +p'p|¥,)>0, (3.33)

foru =1, 2,3, ...,M and normalized solutions ¥,,. The in-
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dices & for the essential solutions are then found by selecting
the NV smallest numbers out of the sequence m = {m,,
m,...,m,, }, where one should also remember the rule that
solutions associated with the same Jordan block should al-
ways belong together. If anyone of these numbers is vanish-
ing, the relation (3.32) is—of course—exactly fulfilled. Once
an essential solution ¥ ; has been determined, the associated
solution @ ; is automatically given by the pairing condition
contained in the biorthonormality relation (2.56), or

(q’/’<1¢1’> :6k15 (3-34)

since there is only one solution @ ; which is not orthogonal to
¥ .. Using the essential solutions, one can now form the new
projectors g and g' of order (n 4 1) according to (3.30), and
repeat the entire procedure. The iteration process becomes
self-consistent whenever the new projectors of order (n + 1)
agree within the accuracy desired with the old projectors of
order n, and the process has become convergent whenever
g = p. In such a case, the trivial relations

r ’ + . ’
q‘lless - ‘I’css’ q q)ess - ¢CSS

(3.35)

will imply the existence of the relations pW., = ¥. . and
p ' (D : = q)éss ’ or

p¥L =V, ploL=0; (3.36)

for all the essential solutions. Conversely, the existence of
the two relations (3.36) indicate that ¢ = p and that the iter-
ation process has converged.

The proof for this statement is based on the fact that by
combining (3.30), (3.35), and (3.36) one gets directly the oper-
ator relations
pa=4q, p'qd" =4, ap=gq (3.37)
Considering the difference A = p — ¢, one gets further
Al=p’ 4+ ¢* —pg—qp=p —q=4,ie,Aisanidempo-
tent which may be diagonalized having only the eigenvalues
0 and 1. However, since Tr 4 = 0, this implies that A = 0,
i.e, thatg =p.

It is evident that it would be interesting to study the
convergence properties of the iteration cycle (3.29) and par-
ticularly its connection with the numbers m,, defined by
(3.33) and with other similar quantities in greater detail, but
such studies are considered outside the framework of the
present paper and will be reserved for later communications.

Reformulation of the theory by means of the charge-
and bond-order matrix

For the practical computer applications, it is conven-
ient to reformulate the theory in a slightly different form. As
before, we will start from two linearly independent sets W
and @ of order M, and we will further use the reciprocal set
@, = O(¥|®) ~' characterized by the relations (3.9) and
(3.10). Let us now introduce the two sets of essential canoni-
cal solutions to the Hartree—Fock equations (3.21) through
the formulas

V=¥, ¢ =0, (3.38)

where ¢ and d are rectangular matrices of order M X N.
Because of the biorthonormality property (3.22), one has

(¢P) =d'(®,[¥)c=d'c=1, (3.39)
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where the right-hand member is a unit matrix of order
N X N. For the projector p, one gets further

p= 1)@ V) @' = [¥ )¢
= |W)cd"(®,| = |[¥)R(D, |,
where
R=cd'

(3.40)

(3.41)

is a matrix of order N X, which is a generalization of the
well-known charge- and bond-order matrix.” Since d' ¢ = 1,
it is evident that it satisfies the relations

R2=R, TrR=N, R#R', (3.42)

1.e., that R is an idempotent matrix of order V. Since R is the
representation of p in the bases chosen, it will sometimes be
referred to as the projector matrix.

It is now easy to express the effective one-particle oper-
ator T,4(1) defined by (2.33) in terms of the matrix R. Using
(3.40), one gets directly

Ta()=T, + f dx,T 13l X3)

- f T s | Wi, YR(®, (x3)

=T+ 2 R, dx,®F; (x2) T2 e (x2), (3.43)
KA

where T, = T',,(1 — P,,). In accordance with (3.17) the ma-

trix t which forms the starting point for the block-diagonali-

zation procedure {3.18) is then given by the expression

t = (D, (1)| T, (1)|¥(1)), (3.44)
and hence it has the matrix elements
t\'/t = <V;Teﬁ(l)|ﬂ>’

=fqb:f‘.(xl)nﬁ(n%(x,)dx,
= (v|T\ju) + ZRKA (vA |T12‘/~t K)

= (V[T\|u) + sz/l [(v A |T\,|ux)

Kopt

— (v A |Tplk )], (3.45)

where the indices v and A refer to functions out of the set @,,

and the indices u and « to functions out of the set ¥. When

one block-diagonalizes the matrix t by means of the similar-
ity transformation S, so that

ST'tS=A, tS=SA, (3.46)

one gets, of course, M solutions to the stability problem ex-
pressed by the second relation (3.46) and they are represent-
ed by the M column vectors ¢, of the matrix S. The essential
solutions are then given by the vectors ¢, satisfying—exactly
or approximately—the relation

(3.47)

analogous to (3.32), and the V essential solutions ¢, form
then the rectangular matrix ¢ of order M X N. According to
(3.19), the matrix t* is further block-diagonalized by the si-
milarity transformation S, = (S, ~')f, and the M solutions d,
to the stability problem of t* are then given by the column
vectors of S,. To every vector ¢, there is one and only one

Re, =c¢,,
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vector d, having the property

dic, =1, (3.48)

since all the other vectors d, are automatically orthogonal to
¢, . The N vectors d, associated with the essential solutions
¢, then form the rectangular matrix d of order M XN, and
one can then recompute the matrix R = ed'. This means
that, instead of (3.29), one obtains the iteration cycle

(3.49)

which forms the basis for the computational procedure.

In this scheme, the matrix tis evaluated from R by using
formula (3.45) for the matrix elements, the similarity trans-
formation S may be found by using standard algebraic pro-
cedures for diagonalizing and block-diagonalizing matrices,
whereas the essential solutions ¢, and d, are selected accord-
ing to (3.47)—which is at least approximately fulfilled—and
(3.48), respectively.

It should be observed that the transformation matrix S
is by no means unique, and that any nonsingular matrix S of
the type

S=ft)S=Sf(A) (3.50)

will also perform the block-diagonalization. For practical
purposes, one may remember the rule that all the column
vectors of S associated with one and the same Jordan block
may be multiplied by the same constant, and that it may be
convenient to choose this constant so that the first vector of
the block becomes normalized to unity. The formula

R = cd' is, of course, invariant under such a transforma-
tion.

R—t—>Sand S~ '—»cand d->R =cd’,
-, —

Evaluation of the transition value

It now remains to evaluate the transition value (T} ,,
which forms the basis for the bivariational principle, in
terms of the matrix R. In applying formula (2.27), one should
remember that the operators 7, and T,= T,(1—Py,)
work only on the unprimed coordinates x, and x, and that
one hasto putx; = x, and x; = x, before the integrations—
consisting of integrations over the space coordinates and
summations over the spin coordinates—are carried out. In-
troducing the expression (3.40) for the projector p into (2.27),
one obtains

<T>12 = T(O) + JT1P(X1,xi)dx1
1 —
+ fT.zp(xl, X} ol x3) dox, dx,
— T+ fTIW(xl)Rmr(x; )dx,

+ -;—ﬁumx,)mr(x;z
X (Wi, RO*(x3 )} dx, dx,

=:Tm)+_§:Rmv04TJ#>
M, v
1 —
+ E_EE}ERKAR#V(VA’JHJ#K>
v KA

=T + z R#,V<VlT1|,u>
", v
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1
+ 2 z zRuRuV“V’l | Tialps )

mve A

— (VA |Tixp)}, {3.51)

where we have used the same matrix notations as in (3.45).
Using the expression (3.45), one obtains further

(T>12 = T(O) + szvtv,u.
pv

S S SRR v A Tralun),
2 54

where the last term occurs to compensate for the fact that all
the two-particle interactions would otherwise be counted
twice. For the second term one obtains, according to (3.41),
(3.18), and (3.39), that

(3.52)

SR, .1, = Tr(tR) = Tr(ted")
B

(n)
= Tric Ad')=Trhd'¢) =TrA = SA,, (3.53)
k

where one sums over the eigenvalues A, of all the essential
solutions. This gives the expression

N
(T, = T(O) + Z’lk

k=1

— 3 S S R R (ATl )

v xAi

— (VA |Tplep)}.

Finally, one may take the average of the relations (3.51) and
(3.54), which gives the comparatively simple formula

(3.54)

1 N
<T>12=T(0) + ‘2— Z Ak

k=1

+ %ZR#,,(‘V,TII/[). {3.55)
Hnv

It should be observed, however, that—since the stability

equation t¢ = ¢ A is very seldom exactly fulfilled—the

expression (3.51) for (T),, is more fundamental than the

relations (3.54) and (3.55).

In a previous subsection, it was pointed out that the
relations (3.12)—(3.17) were only approximately valid and
that these steps in our derivation may be justified by a second
application of the bivariational principle. In connection with
the expansion methods, however, a simple alternative ap-
proach is also possible, which will be discussed below.

Let us assume that the original trial wave functions @,
and @, are approximated by Slater determinants of one-par-
ticle functions ¥ = {¢, } and ¢ = {@,]—where k, I =1, 2,
3,...,N—which in turn are built up by expansion methods
from two one-particle sets ¥ and @ of order M, respectively,
so that

y=W¥c, ¢=9.4d, (3.56)

where ®, = ®(¥|®) . If M is finite, our starting point is
hence more limited than before. In such a case, the funda-
mental projector p defined by (2.15) takes the special form

p =) {(e|d) {¢]
= |W)c(d!¢)'d" (@, |

= |W)R(®,|, (3.57)
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where
R =c(d'c)"'d" (3.58)

is a matrix of order M X M which automatically satisfies the
relations

R2=R, TrR=N, R#R', (3.59)

which are identical to (3.42). The form (3.58) reduces to the
form (3.41) if the sets ¢ and ¢ are chosen biorthonormal,
which is always possible by using the transformed set

¢’ = @{(|¢) ~'. For the moment, it may be preferable to use
the more general form (3.58).

Substituting the expression (3.57) for p into the relation
(2.27), one obtains the formula (3.51), which now forms the
starting point for the bivariational principle § (T },, = 0.In
this case, one may vary the rectangular matrices ¢ and d of
order M X N or even better the charge- and bond-order ma-
trix R of order M X M subject to the constraints (3.59). In
carrying out the details of this procedure it is not surprising
that one recovers the formulas of the previous subsections,
but now in a more exact form. In this approach it is hence
sufficient to use the bivariational principle only once.

In varying the coefficients R, , and R, ,; in formula
(3.54), one should observe that, since the last term is quadrat-
ic in these quantities, the same contribution will be obtained
twice from this term. Using (3.45), one gets directly

T),= 25R#V -1, = Tr(6R - ). (3.60)
nv

Using the same reasoning as in the relations (2.32)-(2.42),
one finds that the necessary and sufficient condition for the
fulfillment of the bivariational principle is that the projector
matrix R decomposes the matrix t, i.e.,

tR=Rt (3.61)
This problem is then solved by finding the similarity trans-

96 J. Math. Phys., Vol. 24, No. 1, January 1983

formation S which brings the matrix t to classical canonical
form A:

ST'tS=A, tS=SA. (3.62)

The rectangular matrices ¢ and d of order M X N are then
found by selecting the N essential solutions ¢, and d, out of
the column vectors of S and (S™!)t, which means that the
relation d' ¢ = 1, is automatically fulfilled. The new matrix
R is then found according to the simple formula R = c d'.
The matrix t and the projector matrix R are hence the essen-
tial tools for solving the Hartree-Fock equations occurring
in this type of problem. Numerical applications of this
scheme are carried out in other publications.®
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When is the Wigner function of multi-dimensional systems nonnegative?
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It is shown that, for systems with an arbitrary number of degrees of freedom, a necessary and
sufficient condition for the Wigner function to be nonnegative is that the corresponding state
wavefunction is the exponential of a quadratic form. This result generalizes the one obtained by
Hudson [Rep. Math. Phys. 6, 249 (1974)] for one-dimensional systems.

PACS numbers: 03.65.Bz, 03.65.Ca, 05.30.Ch

1. INTRODUCTION

The Wigner function of a system in a pure state with
wavefunction ¥ (q,t) is given by'~>

Flpat) = [ dvria+ e -l (1
B

where n is the dimensionality of the configuration space. It is
well known '~ that this function has the properties of a prob-
ability distribution, with the exception that for some state
wavefunctions it is not nonnegative.

Thus it is pertinent to ask the question, when is the
Wigner function nonnegative? In the case of pure states of
one-dimensional systems an answer was already given by
Hudson* (a similar, but partly erroneous result was also pub-
lished by Piquet’; for the sake of completeness this work is
discussed in the appendix); he showed that the Wigner func-
tion is nonnegative if and only if the state wavefunction is a
gaussian function:

¥(q) =exp[ — (ag* + 2bg + ¢)], (2)
where a, b are complex numbers with Rea>0,and cis a
normalization constant that can be taken as real*; in other
words, the Wigner function is nonnegative if and only if the
system is in a coherent state (see Ref. 6 for the coherent
states}.

In this paper we generalize this result to pure states of
multidimensional systems. We show that a necessary and
sufficient condition for the Wigner function to be nonnega-
tive is that the state wavefunction is of the form

Y. ula) =exp| —{q"Aq + 2b-q +¢)], (3)

where A is a symmetric complex matrix with [Re A|> 0, bis
a complex n-dimensional vector, ¢ a real normalization con-
stant, and ¢ = (g,-.,¢,,)-

Our proof follows the one given by Hudson* for the one-
dimensional case. In actual fact, in Hudson’s proof, only one
step is not directly generalizable to several (complex) varia-
bles, namely that step where he utilizes the Hadamard fac-
torization theorem that, to our knowledge, does not have a
several variables version. However, as we shall see below,
only a restricted version of this theorem is needed, and this
restricted version can be generalized to the case of several
variables.

“Research fellow from the UNAM (Universidad Nacional Auténoma de
Mexico).
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Thus the purpose of the present work is to prove this
restricted version of Hadamard’s theorem for several com-
plex variables, and to substitute this theorem for the genuine
Hadamard theorem in Hudson’s proof, which is thus gener-
alized to an arbitrary number of dimensions.

The structure of the paper is as follows: In Sec. II we
give the proof of the sufficiency; this is trivial and it is given
only for the sake of completeness. In Sec. IIT we reproduce
for several variables the first part of Hudson’s proof (i.e., the
part which precedes the use of Hadamard’s theorem). We
give, in Sec. IV, the proof of the restricted Hadamard theo-
rem for several complex variables. We finish the proof of the
main theorem (about the Wigner function) in Sec. V.

Il. THE SUFFICIENCY CONDITION

In order to find the Wigner function associated with the
state wavefunction (3), we substitute it in (1) and we utilize
the following result:

J exp| — ix"Bx + x| dx
R

- oly g ]

=-——-exp|}
B P2

where |B| >0, f; {f = 1,...,n) are the eigenvectors of B and y;
(f = 1,...,n) the corresponding eigenvalues. We then find that
the Wigner function associated with the wavefunction (3) is

(4)

F(pg) = CXP{ — [q"Re Aq + 2Re b-q +¢]

1
ﬂ.n/Zﬁane A’l/Z
n dat 2
— z [ej (q ImA+/llmb+(1/ﬁ)p)] ], (5)
j=1 j

7]

where ¢; ( = 1,...,n) are the eigenvectors of Re A and 4,
(f = 1,...,n) its eigenvalues.

Thus the Wigner function of a multidimensional Gaus-
sian wavefunction is a multivariate Gaussian distribution,
which is always nonnegative.

lll. THE NECESSITY. FIRST PART

We want to find which is the set of wavefunctions that
give a nonnegative Wigner function. Let us denote by (2 this
set, and let us take an arbitrary element ¥ of it; we define in
the complex space C” the complex function J (z) as

J(z) =2 (¥ |¥,,), (6)

where ¥, , corresponds to definition (3) with A =1, b =z,
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and

W19 = | da i) )

This function J (z) has the following properties:

(1) It is an entire function. This is evident from its defini-
tion (6) and from (3) and (7).

(2} It does not have zeros in C".
To prove this we utilize the following property (see Refs. 4
and 7):

1
dpdqF3, (p, q) =
Lh P dq F§, (p.0)Fy, (p9) 2

Using it in the definition (6} we find

(K&l (8)

@P =ea | ddaFipaFe, 0. O

and since Fyy, _(p,q)>0 VzeC" and Yef2 [therefore F, (p,q)
>0], we have

[/ (z))*>0 VzeC” (10)
which gives the desired conclusion.

{3} Its order of growth p (see Sec. 26 in Ref. 8) is at most
two (p<2). [Let us recall that the order of growth of a func-
tionf (z)maybedefinedasp = lim,_ _ In In M (R }/In R, with

M(R) = sup _r|f(z).]
From (6) we have

V(@) <e | 2] I (11)
and using (4),

|#, 1> = e~ (m)*? exp[(Re z)*]. (12)
Thus,

W (@)*<7?||¥ |Pexpl(Re 22]. (13)

Since the order of growth of exp[(Re z)?] is obviously two, we
conclude that p<2 for [/ (z)]?, and therefore also for J (z).

We remark that this property implies that the order of
growth of J as a function of only one of its variables (the other
being fixed) is also at most two.

From these three properties we would like to find the
explicit form of the function J (z), which in fact, for z = iy, is
the Fourier transform of e ~ 1/29°@ *(q). At this point the
problem of the generalization arises (until now we have fol-
lowed Hudson’s proof); in the one-dimensional case Hudson
utilizes the

Hadamard factorization theorem®: If f(z) is an entire
function of order p with an m-fold zero at the origin, we have

flz)=2"e2@ P(z), (14)

where Q (z) is a polynomial of degree 7<p and P (z) is the ca-
nonical product (of genus s) formed with the zeros (other
than z = 0) of f(z).

With this theorem and Properties (1)-(3) we conclude
(in the one-dimensional case) that J (z) is of the form (14) with
2™ and P (z) absent,

J(z) = explaz® + Bz + 71, (15)

and thus that the Fourier transform of e ~ /29" @ *(g)is Gaus-
sian, which is possible only if ¥ (g) itself is Gaussian.
To our knowledge, a generalization of Hadamard’s
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theorem to several variables does not exist, and one of the
reasons is that, in this case, both zeros and poles are not
isolated as in one dimension. But in actual fact, the essential
part of Hudson’s proof is that an entire function without
zeros is the exponential of a polynomial; thus, when thereisa
function f(z) with zeros, they are eliminated by dividing it by
Z™ P(z), and then, using this fact, the expression (14) is ob-
tained. As we said, in several variables it is the product z™
P(z) which is not easily generalized.

Nevertheless, in order to find the expression of J (z) a
restricted version of the Hadamard theorem is sufficient,
namely the version corresponding to a function without ze-
ros. This restricted version may be more easily generalized,
and this is done in the following section.

IV. THE RESTRICTED VERSION OF HADAMARD’S
THEOREM

We are going to prove the following

Theorem: If f{z) is an entire function, in the space of »
complex variables C", with order of growth p and without
zeros, we have

flz) =", (16)

where O (z} is a polynomial of degree r<p.

Proof: We are going to give the explicit proof of this
theorem for two variables only, the case of » variables being
more cumbersome and without anything especially new.

Let usfix z, in f(z,,2,); we thus have an entire function of
z,, with order of growth at most p and without zeros; by the
Hadamard factorization theorem we can write it as
exp[ Z/_ ;2| | with r<p and where a,(j = 1,~-}depends on
z,, and this is valid for all z, finite. Thus we have

flervz) = exp| Sz, | (17)
in the set
D, = {(z122):2,€C, 0<|z[<M,}. (18)

Keeping now z, fixed, and proceeding in the same way,
we conclude that

Slensa) = exp| 3 Butee | (19)
k=1
in the set

D, = {(21,2,):0<]z,|<M,, z,€C} (20)
and with s<p.

Sincef(z,,2,) is an entire function without zeros, we may
define its logarithm Q (z,,z,) as an entire one-valued function
over C2, and, from (17) and (19) we deduce that

Z a;(z,)) = }_‘, Bi(z))25 (21)

j=1

in D,nD,, because these two functions are just two expres-
sions in D;nD, of one and the same function
Q(z12)) = Inflz,,2,).

Now, we differentiate (21) n times (n<s) with respect to
z, [thisis possible, because Q (z,,2,) is an entire function], thus

F. Soto and P. Claverie 98



obtaining
2‘1["}(22)2’1 = 2 ———Blz)z; "
i=1 k=n (k )
(n=12,..), (22)
and, taking z, = 0, we get
r (nl(
B.z)= 3 = )z’l (n=1.2,..) (23)

=

for all z, such that 0 < |z,| < M,. Thus,

roos ak l(o)
Qi)=Y ¥ ~— 24
j=1lk=1
in D,nD,. Denoting for brev1ty a; K0)/k! = Vx» we finally get

the expression

Inf(z,,2,) = Q(z1,2)) =

Z Z ViZh 2 (25)

ji=1k
in D,nD,. In fact (25) is valid in every bounded set of C?
because M, and M, in (18) and (20) are arbitrary but finite.
Since Q (z,,2,) is an entire function over C?, it is easily
deduced by analytic continuation'? that (25) and hence

Flepz) =exp| S }:r,kzazz] (26)

j=1k=1
are valid in the whole complex space G2

It only remains to show that the degree of Q (z,,2,) is at
most p, i.e., that in (26) y,, = O forj + k > p. Supposing that
this is not the case and taking z, = z, = R (real) we easily
conclude that the order of growth of f(z,,z,) would be greater
than p, in contradiction with the assumption made; thus y,,
= 0 forj + k > p and the proof is completed.

V. THE NECESSITY. SECOND PART

We start from the results obtained in the first part (Sec.
I1I). We defined the function J = C"—C such that

J(z) =W [P, ,) (27)

with ¥ef2, and we found that it has the following properties:
(1) It is an entire function.
(2) It does not have zeros in C".
{3) Its order of growth is at most two.
Thus by the restricted version of Hadamard’s theorem
in several dimensions, we have

2 . n
J(z) = exp{ Z ajl,___J"z"l'---i,," + 2,8]2]- + y]. (28)
Jiredn = 1 =1
(j‘ + +j” — 2) J

Now
. 2
J(zy):exp{ - > e W Vi +12.3y1 +7’]
Jiodn =1
Vit jp=2)
(29)
but from its definition (27) we also have
J (iy) =f dq¥¥gq)e™ " ¢, (30)
.
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i.e., the Fourier transform of e ~ /29’ W *(q) is a multidimen-
sional Gaussian function, which implies that e ~ V27’ *(q)
itself is a Gaussian function, and 2 is the set of multivariate
Gaussian functions, which is the desired result.

VI. CONCLUSION

The question concerning the nonnegative character of
the Wigner function is therefore now completely settled for
pure states: whatever the number of variables, only the
Gaussian wavefunctions give rise to a nonnegative Wigner
distribution (which is itself Gaussian, too). Of course, as
mentioned by Hudson,* the study of this question for mixed
(instead of pure) states remains an open problem.
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cept that the restricted form ¥ = exp[ — (ax* + b)] with
a>0and b >0 is unnecessary'' (see before Theorem 3.3 in
Ref. 5; this paper is brief, but all the argument can be recast-
ed in a detailed form''). However in the case of a complex
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sense that this proof does not make use of the Hadamard
theorem but uses instead some properties of convex func-
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The purpose of this article is to obtain a scalar function the zeros of which give the discrete energy
values for a system of electrically charged particles. The relation between the serial expansion of
the characteristic function in powers of the system’s eigenvalue and the Stieltjes series has been
revealed not only for the electrically charged particles but also generally for any positive (or
negative) definite Hermitian operator which has only a discrete spectrum. The use of Padé
approximants to express the characteristic function has offered a rapidly convergent scheme to
evaluate the system’s eigenvalues. The first few elements of the Padé Table for the reciprocal of the

characteristic function of certain systems have been given to verify the presented idea
numerically. The determination of these elements needs the values of certain complicated
integrals which we name “Zeroth Order Hyperspherical Spectral Coefficients” [HSC(g,)]. The
first two of these coefficients are investigated and their evaluation is realized analytically.
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I. INTRODUCTION

Several authors have employed the space folding meth-
od together with some perturbational schemes in quantum
mechanical calculations.'* The main idea of this procedure
is to convert the original eigenvalue equation into a scalar
one. To this end, the solution space of the original equation is
divided into a conveniently chosen space and complemen-
tary with the aid of some projection operations. After some
intermediate steps one can arrive at a scalar equation for the
determination of the original equations’ eigenvalue. Homog-
enization of this equation gives a function, zeros of which are
the desired eigenvalues of the operator under consideration.
The serial representation of this function in powers of the
eigenvalue parameter is needed to obtain an explicit struc-
ture. This expansion does, however, converge only in a res-
tricted domain of the complex plane of eigenvalue parameter
which does not cover all the eigenvalues of the operator un-
der investigation. Fortunately we have a possibility of ob-
taining such a representation which is valid on the domain of
all desired eigenvalues and offers a rapidly converging com-
putational scheme. Indeed, rational approximations and the
Padé Table built for them have this property. Recent years of
science bear an increasing tendency to use Padé approxi-
mants in several problems of physics and chemistry.*”” The
effectiveness of such rational approximations is that in most
cases only a few approximants are sufficient to obtain a rea-
sonable accuracy.

In the following sections we shall obtain the character-
istic function for a positive definite operator having only a
discrete spectrum and investigate its serial expansion in the
sense of Stieltjes series. Some analytical evaluations and nu-
merical calculations for certain systems will complete the
present work.

Il. DERIVATION OF THE CHARACTERISTIC FUNCTION
Consider a system which can be described by the fol-
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lowing equation:

A f=AWf, (2.1

where the Hermitian operators A, W, the scalar 4, and
the function f characterize the structure and the behavior of
this system. A and W are two operators on a Hilbert space,
and may be matrices, integral operators, or differential oper-
ators with some compatible boundary conditions. As in most
of the quantum mechanical problems we can assume that at
least one of the operators A and W is positive definite and
hence is invertible. We can also additionally assume that the
Eq. (2.1) has only a discrete spectrum and its eigenfunctions
form a complete basis set for the Hilbert space under consid-
eration. On the other hand another assumption which states
the boundedness of the operator A ~'/2WA ~'/2is needed to
prove the theorem of the next section.

Let us choose a normalized function ¢, in the Hilbert
space spanned by the eigenfunctions of Eq. (2.1). Decompo-
sition of finto two orthogonal components, one of which is
proportional to @, gives the equalities below,

f=A4¢,+ g, (2.2a)
(@0, 8) =0, (2.2b)
where A is constant and the left side of the last equality
denotes the inner product of ¢, with g. By using Egs. (2.2a)

and (2.2b) in Eq. (2.1) and taking the inner product of the
resulting equation with @, one can get the following relation:

(@0 A @A +(@o Ag)=A (@0 W@old + A (@, Wg)
2.3)

If we define some projection operators P,, P, in the fol-
lowing equations where I denotes the unit operator on the
aforementioned Hilbert space and 4 represents an arbitrary
function in the same space,

Poh = (@ 1) 9o (2.4)
P =I—P, (2.5)
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we can obtain another relation between g and 4 by using the
fact that P, is the unit operator on the complementary space
of go; hence g = P, g. Following some algebraic steps we can
get the formal result given below,

g= — [PAA—AW)P]T'P.A-AW)pA.  (26)

The elimination of g using Eqgs. (2.6) and (2.3) leads to
the following algebraic equation:

(@0, [A =AW @o)d =@y, [A —AW]P [P.(A —AW)
XP,]7'P.IA — AW lggd. (2.7)

Recalling the relation ¢, = Py@,, we can immediately
notice that the operators in the expectation values above can
be obtained from the matrix representation of A — A W via
some reduction operators. We can therefore conclude the
following equality after some intermediate steps:

(@olA — AW 1@y) — (@o,[A — AW )P, [P.(A _/IW)Pc]il
XP[A =AW 1)) = [ @olA — AW ] ‘g~ (2.8)

This result together with Eq. (2%7] implies the fact which is in
a certain sense apparent that the zeros of the following func-
tion are the values of A:

A (@old) = (@0, A "' ol o, [A —AW ] ')~ .(2.9)
We name this function “Characteristic Function of Eq. (2.1)
with respect to the basis function g, or briefly “Character-
istic Function.” For the characteristic function to exist, A
must be assumed to be positive definite and this does not
contradict with our assumptions about the operators A, W.
Indeed, in the case where only W is positive definite, refor-
mulation of Eq. (2.1) with a new eigenvalue parameter A ~'
instead of A makes it possible to interchange W with A.

Let us now investigate the case 4 = 0 which satisfies
Eq. (2.7). In this situation one has to find a nonzero element
for g in Hilbert space to obtain a nontrivial solution of Eq.
(2.1). However, a nonzero g with a vanishing 4 implies that
P, (A — AW )P, must be singular and finally ¢, must be an
eigenfunction of Eq. (2.1), as can be deduced from Eq. (2.6).
But this means @, has coincidentally been chosen as the ex-
act solution of Eq. (2.1); therefore the case 4 = 0 can be inter-
preted as trivial.

The selection of @, may affect the number of zeros of the
characteristic function. Indeed, in the case where ¢, can be
expressed as a finite linear combination of the eigenfunctions
of Eq. (2.1) the characteristic function produces a finite num-
ber of eigenvalues. The possibility of selecting @, as a finite
linear combination of the eigenfunctions by chance de-
creases when the structures A and W are complicated.

The invariances of A and W under certain transforma-
tions {for example, the exchange of the particles coordinates)
give the possibility of separating the solution space for Eq.
(2.1) into two subspaces, one of which contains the symmet-
ric functions and the other the antisymmetric ones, under
one of the transformations mentioned above. If, however, all
these transformations are commutative each of the sub-
spaces can be further separated into similar subspaces. If ¢,
has been selected in one of these subspaces, the characteristic
function will definitely not give any eigenvalue correspond-
ing to other subspaces.
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1. PADE SCHEME FOR THE CHARACTERISTIC
FUNCTION AND ITS CONVERGENCE

The characteristic function defined by Eq. (2.9) has an
explicit form. To find the zeros, what one needs is its explicit
expression. One of the possible ways to this end is to expand
the characteristic function in powers of 4. However, this
type of expansion (Taylor series) does not cover all the com-
plex domain of A. This fact can be seen by using an expansion
of ¢, in terms of the true eigenfunctions of Eq. {2.1). Indeed,
such an expansion creates the reciprocal of an infinite sum
over simple fractions and the convergence domain of the
Taylor series for this type of functions is restricted. In spite
of its restricted convergence domain, the Taylor expansion
of the characteristic function is not all that incovenient. Us-
ing some analytic continuation methods one can obtain the
expression of the characteristic function over the whole
complex domain of 4. The Padé scheme® which has recently
been widely used, is a powerful example amongst such meth-
ods. We shall also employ this scheme to obtain the approxi-
mate spectrum of the system under consideration. For this
purpose, first of all, we shall try to make a bridge between the
characteristic function and Stieltjes series.®* We shall then
have the possibility of learning about the convergence of the
Padé scheme and some of its important properties. Towards
this goal, we can begin with the following theorem.

Theorem 3.1: If 4 is a bounded positive definite Hermi-
tian operator the function A defined as

A(p|A)= (g + 4] '9), (3.1)

when expanded into the powers of A, produces a Stieltjes
series.
Proof: The serial representation of 4 can be written as

Agla)= S (4, A%)— Y. (3.2)
j=0
If we construct an » + 1 dimensional square matrix with its
elements defined in the following manner,

Q=647 g)
mun=0,1,2,..., (3.3)
Lk=0,12,..,n,

all we have to do is to show the validity of the following set of
inequalities known as one of the definitions of the Stieltjes
series:

det £2°7 >0,
det £2'">0,

n=0,1.2,..,
n=0,1.2,...

(3.4a)
(3.4b)

Now, consider the following quadratic form (C;’s are arbi-
trary constants):

S CC25 = $AT S CAY). (3.5)
jk=0 j=0

Since A is Hermitian and positive definite A '/2 can be de-
fined easily and this fact gives the possibility of writing the
following equalities:

¢ = i C,AT* ™2,

ji=0

(3.6a)
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S CcrC R =6.6)=1181 (3.6b)
k=0
Using the positive definiteness of A, one can conclude that
the quadratic form given by Eq. (3.5) is always positive for
any nonzero basis function ¢. However, a careful use of the
matrix theory shows that £2 2" must be a positive definite
matrix and this implies the validification of Egs. (3.4a), and
{3.4b) and therefore the correctness of the Theorem 3.1.

From this theorem the following corollaries can be
written by recalling some theorems about Stieltjes series.®

Corollary 3. 1: The reciprocal of the characteristic func-
tion can be expresed as a Stieltjes series by expanding into
powers of A. [Indeed the use of the scalar A, the function
¢ = (@A ~'@olA @, and the operator
A=A "'"2WA ~Y2instead of — A,@, and W, respectively,
brings us to this conclusion.]

Corollary 3.2: Any sequence of [L + M /L ] Padé ap-
proximants to the Stieltjes series for the reciprocal of the
characteristic function converges to an analytic function in
the cut complex plane 0 <A < oo as L increases unbounded-
ly. Theindex M is restricted as M > — 1 and the definition of
{L /M ] Padé approximants can be written as follows:

[L/M]=P(1)/QuA) Qu0)=1, (3.7)

where P, and Q,, arethe L thand M th order polynomials of
A, respectively.

Corollary 3.3: The A values obtained by using the
[L +M /LM > — 1)Padé approximants to the reciprocal
of the characteristic function are on the positive real axis and
the A values (approximate eigenvalues) corresponding to the
successive approximants interlace.

This theorem and its corollaries show how to obtain an
approximate spectrum for a positive definite operator, fur-
thermore they guarantee the convergence of the presented
scheme. Therefore, to obtain the spectrum of a positive defi-
nite operator one has to evaluate the terms like (#,4/4 ), to
construct the Padé table and then to arrive at the approxi-
mate spectrum by tracing some diagonals starting from one
of the approximants like [L /1], L = 1,2,... or [1/2]. Sections
to follow will cover this type of work for electrically charged
particles.

IV. ELECTRICALLY CHARGED PARTICLES AND
HYPERSPHERICAL SPECTRAL COEFFICIENTS

Quantum chemical systems are composed of electrons
and nuclei. After the separation of mass center coordinates
and a suitable diagonalization procedure, the spin-free
Schrodinger equation can be put into the following form
without taking care of relativistic contributions®'°:

=V =wfl, ©>0; ¢r)=0, (4.1)
where 7,6,V?, and v(6 ) stand for the hyper-radial coordinate,
the set of hyperangles, 3V-dimensional Laplacian
(N + 1 = the number of the particles in the system), and the
hyperangular interaction potential,'® respectively. The ac-
companying boundary conditions for Eq. (4.1) are the usual
continuity conditions, at the singular points of the system’s
Hamiltonian. The eigenvalue parameter @ is related to the
system’s dimensionless energy parameter E as follows:
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E= —1/20% (4.2)

Equation (4.1) is different than the original Schro-
dinger’s equation for a system of electrically charged parti-
cles. Indeed in the original Schrédinger’s equation the poten-
tial term v(0 ) forms a part of the operator, the eigenvalues of
which are investigated. In the present case, however, v(8) is
in a different position. Since the structures of the operators
change when we transform from the original Schrodinger’s
equation into Eq. (4.1) we can expect the spectral behavior of
the problem to change also. Due to the fact that the charac-
teristic values of Eq. (4.1) correspond to the negative—
bound state—energy values of system and this part of the
energy spectrum is discrete we conjecture that the « spec-
trum is also discrete. As a matter of fact the @ spectrum of
the simplest system—hydrogen atom—is discrete, although
its energy spectrum has discrete (some negative values) and
continuous (all positive real axis) spectra.

Although some or all of the characteristic values of Eq.
(4.1) may be negative depending on the nature of the interac-
tion characterized by v(8 ), the constraint @ > 0 in Eq. (4.1)
which appeared while transforming the original Schro-
dinger’s equation into Eq. (4.1), eliminates these negative
values. Therefore negative w values do not correspond to any
physical state; however, their existence may help us to classi-
fy the bounded states. To this end we can name five possible
cases in the following manner with respect to the nature of
the @ spectrum: (i) only positive @ values, “‘completely
bounded system,” (ii) including zero, a finite number of nega-
tive @ values in addition to positive o values, “incompletely
bounded system with a finite deficiency,” (iii) infinitely many
positive and negative, @ values, “incompletely bounded sys-
tem with infinite deficiency,” (iv) a finite number of positive
o values in addition to negative w values, “highly deficient
system,” (v) only negative w values, ‘“‘unbounded system.”

Now, if we define A and W as follows,

A=ry—", (4.3)

W =u(6), (4.4)

to evaluate the characteristic @ values we can use the charac-
teristic function approach presented in previous sections.
Toward this end the following expansion can be employed:

Aig|—w)=Y 40, (4:5)
ji=0
where A ;, the “hyperspherical spectral coefficient with re-

spect to the basis function ¢,” or briefly HSC(g,), can be
explicitly expressed by using an orthonormal expansion in
terms of hyperspherical harmonics and their addition theo-
rem'! to put the inverse of A given by (4.3) into an integral
operator form as follows:

4=(em) 2, L) L fers

X [,LU” + ki(k, + 22)] - r] o)
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j— 1

| TLtks +)CEE e L 0, )

I=1

X @ (r.€;)dS;--dS dr, (4.6)

where v(£ ) is used instead of v(€ ) and &, and C{(x) stand for
the unit position vector which only depends on hyperangles
and ath kind & th order Gegenbauer polynomial,'' respec-
tively. The parameter « is defined as (3V — 2)/2 and the
function ¢ is as defined in Corollary 3.1. p denotes the hyper-
radial part of the operator 7A.

By defining a new operator § as follows,

proc=r(p+a) (4.7)
and using the Lebedev transform'? technique which enables

us to express the effect of the operator 79[(k + @)’] ' ona
Lebedev transformable function of #,4,(r) as follows,

hofr) = r[p + (k + a)’] ™ 'hy(r), (4.8)

Hyy) = f [ + (k +a?]

X (cosh 7x 4 cosh 7y)~ 2y sinh 7y H |(x) dx,
(4.9)

we can convert the hyper-radial parts of Eq. (4.6) into

(j + 1)-dimensional integrals without using any differential
operator included in their kernels. H, and H, appearing in
Eq. (4.9) are Lebedev transforms of 4, and 4,, respectively,
and the argument of modified Bessel function'? in the kernel
of the Lebedev transform is multiplied by } for the sake of
convenience.

On the other hand the following relation shows that the
sums on Gegenbauer polynomials in Eq. (4.6) can be ex-
pressed in terms of hypergeometric functions.'” Using some
properties of hypergeometric functions

il k+a ;
Ca T,
kgo (k + a)2 +x2 k(§ 77)

(4.10)

_ 1 J‘w ta71+ix_+_tavlfix
2Jo [1=2t(ET ) +127]"
This last relation can be verified by using the method of
separation into partial fractions, integral representation’? of
these partial fractions, and the summation formula'? for Ge-
genbauer polynomials.
Therefore by defining a new function S, (x,y),

B..(x,y) = x sinh 7x F(a;i")r(a;ix>

a—+ix a—ix | 5

2 2
X F,
1
2
+2yr(a+1+zx)r(a+l—zx)
2 2
a+1+ix a+1—ix iyz
S F 2 ’ 2
241 i H
> (4.11)

one can arrive at the following expression for 4 ; after some
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intermediate steps:

A = 22— YUl =+ -2
j

<J, L LA rars (G )

X &P T1vEN [ Bt 76

i—2
XJH (cosh x, + cosh 7x, )"

I=1

XdS,-dS;dx -dx; _,drdr. (4.12)
In the case where the » spectrum has negative together
with positive spectra the convergence of the Padé scheme for
the reciprocal of the characteristic function can be proved
depending on the locations of poles for some domains of w.
However, this subject will be held outside of this paper, since
some redefinitions of the operators and parameters make it
possible to study with positive definite operators.

V. ANALYTICAL DETERMINATION OF THE FIRST AND
SECOND HYPERSPHERICAL SPECTRAL COEFFICIENT

Since the evaluation of A, is trivial (4, = 1) we can start
with 4 ,. For its determination, one can select as the simplest
basis function @,,, e ~ 7, which is the ground state eigenfunc-
tion of [} — V)]~ and this yields an integral on hyperan-
gles. Using the explicit structure of potential function'® v(6)
and rotating the hyperaxes in such a manner that the matri-
ces appearing in the potential function are diagonalized, we
can arrive at the following value for 4,:

2l (e + 1)

N N+1 _ _ 12
T RRELA

J=1 k=j+1
(5.1)

where Z; and m ; denote “electrical charge parameter” and
“mass parameter” of the jth particle, respectively.'®

Performing the integration over r and 7in Eq. (4.2) and
recalling the evenness of the potential function v(£ ) with re-
spect to its argument, 4, can be brought to a finite sum of the
following (6N — 1) dimensional integrals:

She = J f f (ETV, &) 20TV kM) Px
0 STI Sé
Xsinh mxI" }a + 1 + ix)

XTI a + 1 —ix)r(““;”‘)r(“;"")

a+ix a—ix
2

XLF
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where ¥, ’s denote potential matrices. '® The integration over § and 77 can be analytically handled'* and $/ can be expressed

in terms of some one-dimensional integrals as follows:

ok _ BATT _ Vil (a)
j,ﬁ} —_I:(a_)_ Z\)+ Zaly) 2l (a— )

S|

(5.3)

where 7 has the meaning given in a previous paper'® and the integrals denoted by .*’s have kernels which contain a hyperbolic
sine function, some complex argumented gamma functions and their conjugates, and certain hypergeometric functions

3F,, oF, with complex parameters and their conjugates.

Using the explicit expression of the modulus of the complex argumented gamma function'? for integer a values
(@ = n + 1) and the explicit structures of the generalized hypergeometric function'* ;F, and Gaussian hypergeometric func-
tion'>'*,F, in addition to some properties of the digamma function ¢ (logarithmic derivative of the gamma function), one can
summarize the following results after detailed and tedious intermediate steps:

f1(7)={9n9n+18;3d3;1i[1192 (t+5)} 0315;1’1, '
(5.4)
S TN(EER
+,g 2\’1/!77 (n(i;fl));(:%_l/ij)L I+ )}'g‘;)
For) = (= 2 L
ST SRS R

X arcsin ¥, (5.6)

where the new entities appearing above can be explicitly de-
fined as follows:

D =y L4 (5.72)
" 47 dr?
d? d
@ = 2 l— s T YT 5.7b)
m=m 4+ Vz)dyz rm (
vnzzznni{’ (=1, 1=(=1) 02], (5.8)
2 2
_ n n/2
S (ETE P
1—(=1) , (rtl2 n—j
+%@0 l—r g%m]l_r‘@k—nﬁ’
m=1 k=1
(5.9)
n/2 n+1)/2
o=][[ D3+ 0:=D, H) D? . (5.10)

m=0 m=1

These therefore complete the analytical evaluation of 4,.

VI. APPLICATIONS TO CERTAIN SYSTEMS AND
CONCLUSION

Employing the values of 4, and 4, given in the previous
section one can evaluate the Padé approximants [L /M,
where L + M = 0,1,2. For this purpose we can give the ex-
plicit expressions of these entities in terms of 4, 4, and w as
follows:

[0/0} = 1,

[0/1] =(1 — 4,0)"

[1/0] =1 + 4,0,
(02]=[1—dw+(4 Jo?]~
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(1711 =[4,+ {47 — 4,)0][4, — 40] 7",
[2/0) =1+ 4,0 + 4,0° (6.1)

These equalities show that the first column of the Padé
table has no pole. Therefore it does not produce any value for
o. Physically reasonable & values obtained from [0/1), [1/1],
and [0/2] for certain three particle systems are presented in
Table I. As can be noticed easily the approximation for He is
in good agreement with the exact results.’® However, dis-
crepancy between the calculated and exact values increases
as the atomic number increases in helium isoelectronic se-
ries. This difficulty can be removed by using higher order
Padé approximants or different types of basis function. The
hydrogen anion case ought to be fundamentally different
than heliumlike systems, since it seems to have negative val-
ues in its w spectrum. The mathematical character of the
hydrogen anion is under a detailed investigation and possi-
bly will be published in the future. The selection of three-
particle systems as examples is due to the fact that they are
the most realistic systems which have symmetric eigenfunc-
tions under coordinate exchange transformation among all
N-particle systems. However, for integer a values, similar
calculations can be handled and some approximate values
can be obtained since integer a values make it possible to
evaluate 4, analytically. However, half-integer a values are
also as much realistic as the integer ones. In this case at least
numerical methods can be utilized to this end. Due to the
fact that all evaluations use a symmetric basis function g, all
results will correspond to the symmetric eigenfunctions of
the system under consideration. Although these results give

TABLE I. Energy values®* obtained from several Padé approximants for
heliumlike systems.

EOlb EOZC Ell EPKd
H™ 0.3854 0.5349 0.5642 0.5278
He 2.5000 2.8659 2.8927 2.5037
Bet* 12.2627 13.2915 13.3347 13.6555
c+e 29.4034 31.4083 31.4766 32.4062
o+® 53.9221 57.2165 57.3176 59.1565

“To obtain the energy values in eV alt columns must be multiplied by
—27.196 V.

®E,,, has been calculated from the pole of [L /M ] Padé approximant.

¢The [0/2] term has two poles, but only one of them is physically mean-
ingful.

9 These results are due to Pekeris et al. (Ref. 15).
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some information about the mathematical structure of the
systems spectrum, the Pauli principle makes them physical-
ly meaningless almost for all atoms and molecules. Since we
did not consider contributions due to the spin of particles
there remains only a few systems such as heliumlike atoms
which have symmetric eigenfunctions in the physical sense.
On the other hand there does not seem to be any clue which
shows the existence of a spectral series corresponding to
symmetric behavior of the system in the experimental re-
sults. Therefore the symmetric basis function ¢, will be use-
ful only for a few systems, in the physical sense. However,
these calculations can be realized for other types of basis
functions without extra effort. The studies to this end are
under a condensed work.

As can be easily noticed, spectral coefficients keep all
information about the system under investigation. Therefore
more accurate results await the values of higher order hy-
perspherical spectral coefficients. The work for this purpose
has been almost completed. After finalizing some details it
will be the subject of a coming publication.
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Perturbation expansion of S matrix for background scattering

S. Bosanac?®™?

Quantum Theory Project, Williamson Hall, University of Florida, Gainesville, Florida 32611
(Received 21 May 1981; accepted for publication 6 October 1981)

The S matrix near a pole is parametrized into the contribution from the resonance and the

background scattering. We develop a perturbation theory for the background scattering, based on
the Jost function formalism. A closed expression is found up to the second order in the coupling
strength between the channels. A brief comparison with the other formalism is also made and the

advantages of the present theory are shown.

PACS numbers: 03.80. + r, 11.20.Dj, 24.10.Dp

1. INTRODUCTION

The major problem in the theory of resonances is to give
a qualitative and quantitative description of how they are
observed in the scattering cross sections. In the collisions
where the scattering amplitude is given by the contribution
of only a few partial waves, e.g., nuclear reactions, electron-
atom scattering or atom-surface collisions, the problem is
always reduced to a question: how the S matrix is parame-
trized in the vicinity of a resonance. The simplest answer is
given using the complex energy formalism in which a reso-
nance is represented by a pole of the $ matrix."? In general,
the pole is a complex number,* and since we will regard the S
matrix as a function of the wavenumber rather than the ener-
gy, we can write for a general element of the S matrix in the
vicinity of a pole k,

Sm‘n NBm,n/(k_k())+bm,n’ (11)

where k is the real wavenumber corresponding to the colli-
sion energy. Broadly speaking {1.1) is a three parameter for-
mula: &, gives the position of the resonance [Re(k,)] and its
width [Im(k,)], while the residue measures the height of the
resonance and the background term b,,, , describes its shape.
The parametrization (1.1) is the well-known Breit—
Wigner formula,*® except that instead of the wavenumber
they used the energy as the variable. However, this is not the
major obstacle since by multiplying both the numerator and
the denominator of (1.1) by (k + k), we obtain the usual
Breit-Wigner form. The form (1.1) gives quite a good de-
scription of the § matrix near a pole and would be of interest
to relate the three parameters to the coupling matrix be-
tween the channels. Several schemes were proposed®’; how-
ever, the one due to Feshbach’ has been used in many appli-
cations. The advantage of the Feshbach formalism is that it
can also be used away from a resonance, and therefore, it can
serve as a general method for the computation of the S ma-
trix in the problems where the channels can be separated into
the closed and open ones. The weakness of the method has
been discussed, '° especially when it is used as a basis for the
perturbation theory of the poles, residues, and, as we will
show in the present work, the background term in (1.1). The
two major difficulties are (a) the contribution of the closed
channels are separated from the contribution of the open

*On leave of absence from R. Boskovié Institute, 41001 Zagreb, Croatia,
Yugoslavia.
"This work was supported in part from the grant NSF F6F006-Y.
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channels and (b} the use of the complete set of the eigenfunc-
tions of the uncoupled channels. As the result, in the first
case, it is not clear how to treat the resonances which are the
true resonances in the uncoupled open channels, while in the
second case, one has to include in the theory the channels
which are not directly present at a particular scattering ener-
gy. More about the second point will be briefly discussed in
the Sec. 4 of the present work.

An alternative perturbation approach for calculating
the poles and the residues was developed and applied to the
Regge poles.'' It is based on the fact that the poles of the S
matrix are also the roots of the equation

Det(/) =0, (1.2)

where J is the Jost function. In the case of the Regge poles it
was demonstrated how the theory is applied even in the in-
stances where the Feshbach theory was criticized. In par-
ticular it was shown how the residues are calculated when
the resonance originated as a true resonance in the uncou-
pled open channels. In the present work such resonances will
not be treated since we will be only interested in the com-
pound state resonances, i.e., the resonances which are the
bound states in the uncoupled channels. In Sec. 2 of the pre-
sent work we will briefly summarize the main points in the
theory as applied to the energy poles of the .S matrix.'®

The same idea was applied to the perturbation problem
in a single channel case.'” It was found that the first-order
perturbation correction agreed with the usual Rayleigh-
Schrodinger theory; however, the second-order is different
since it does not involve the use of the complete set of eigen-
functions of the unperturbed Hamiltonian. The theory was
generalized to the multichannel case'® where also the degen-
erate problem was studied and it was shown explicitly where
the advantages of the present ideas are.

In this work we would like to study how the theory
gives the background term in (1.1) under the following as-
sumptions: (a) The coupling between the channels is weak,
(b) the poles represent the compound state resonances, and
(c) the poles are not degenerate in the unperturbed Hamil-
tonian. These restrictions are not essential, except the weak
coupling assumption, since generalization to these cases is
straightforward.

The derivation of the background term is not a unique
procedure. Let us briefly discuss this point for an arbitrary
holomorphic function f'(z) with the well separated first-order
poles. Such a function is a representative of the S-matrix
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elements. Let us assume that some of the poles have a small
imaginary part, much smaller than the separation between
the neighboring poles. Therefore we can write in the neigh-
borhood of a pole

fle)=B/z—z,) + gla), (1.3)
where z, is a pole of f(z). The function g(z) is now analytic in
the circle, the radius of which is determined by the distance
to the closest pole of z,. Hence, g(z) can be expanded in the
circle in a Taylor series around any point. In the representa-
tion (1.1) we retain only the leading term in such an expan-
sion, which we designate by b. It is obvious that its value is
not given uniquely and depends on the point around which
g(z) is expanded. We must therefore impose certain condi-
tions which will give its value uniquely. For example, we can
choose that the difference

A=fl)—B/z—2z)—b (1.4)

is minimal on the real axis of z. In particular we can assume
that

Re z, + &
J. |4 |* dx = min, (1.5)

Rez, — &
where the variable of variation is 5. The last condition is
equivalent to the equation

J::b(f W=7 . ZO) dx = bS, (L6)

where & is the interval on the real axis around Re z,, in which
(1.4) is the best representation of the S matrix. In practice
solving (1.6) is not straightforward. Therefore, we will as-
sume that the point of expansion of g(z) coincides with z,, in
which case the formalism greatly simplifies. However, we
should have in mind that this may not be the best choice for
b, as we have shown in the preceding discussion.

2. PERTURBATION THEORY FOR THE POLES AND
RESIDUES

In this section we will briefly review the perturbation
theory of the poles and residues of the .S matrix based on the
Jost function formalism.'® Let the set of equations describing
inelastic processes involving n channels in the matrix nota-
tion be

v =(V—K (2.1)

where K7 = k? — E, and Vis the n X n potential matrix. Let
us assume that the first O channels correspond to the open
channels and the subsequent C channels to the closed chan-
nels, i.e.,
Ki>0, i=123,.,0,
(2.2)
K <0,

Let us also assume that the off-diagonal elements of } are
small compared to the diagonal ones, hence they can be
treated as a perturbation

V="V,+eV, (2.3)

where ¥’ is zero on the diagonal. In such a case the regular
solution of (2.1} is given in the form of the integral equation

i=0+1,..,n.
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Y=to+ — K f G(r, r\V'(rigrdr, (2.4)
2i 0
where
Gir,r)=fo (r)fo () =fo" (Nfo (), (2.5)

where ¢, and f§ are the regular and irregular solutions of
(2.1), respectively, when € = 0. The regular solution is de-
fined with the boundary condition

Y—0, r—0, (2.6)
and the irregular

[ (r)~exp(F iKr), r—oo. (2.7)

The Jost function is then'?

€ . (7 _ .
J——JO——EK L drfo (r) V'(r) ), (2.8

and the roots of the equation
F=DetlJ)=0 (2.9

in the variable & give the poles of the S matrix, which are
interpreted as the bound states and resonances of the system.
Approximate solutions of (2.9) are obtained if we set € = 0, in
which case

F=DetlJo) =J, jo+s, =0, (2.10)

wherej, are the diagonal elements of J,,. Therefore, the set of
the poles of the S matrix correspond in the zeroth order of €
to the set of poles in the uncoupled channels. In our treat-
ment we will assume that the set of poles, obtained from
(2.10), are not degenerate, i.e., the poles from different chan-
nels are not equal.

Let us designate by « one of the roots of (2.9). Since F'is
also a function of €, we can expand « in the power series

k(€)= ko + €k, + 1 €k, + -, (2.11)

where k,, is a solution of (2.10). For simplicity we will assume
that k, represents a bound state in the pth closed channel.
This restriction is not essential since the perturbation theory
of resonances can be equally applied to the resonances in the
uncoupled channels. However, a bound state in the uncou-
pled channels produces the Feshbach type resonance and
they are by far more important in the study of inelastic colli-
sion processes than the shape resonances, how the other type
is usually referred to.
As was shown, the coefficients in (2.11) are'’

k,=0

and

(2.12)

1 2 1
2Kpj[;j: I=1#p Kljl

x( f TV, dr ’wf—(r')V,,,v') 4, () dr

=

+ [Tarw s [ ar wiew, i)
(2.13)

where the wave functions correspond to the unperturbed so-
lutions of (2.1}. The unperturbed Jost functions in (2.13) are
defined from the asymptotic form of the regular solution ¢,
in the / th channel,
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¥, ~j expliK,r) +j, exp( — iK,7), r—oo, (2.14)
and j, is defined as
dj,
= . 2.15
= (2.15)

Similarly the residues of the S matrix can be calculated
using the perturbation theory. It was shown'® that for the S-
matrix element S,, ,, corresponding to the open channels,
the appropriate residue has the parametrization

lim(k — «)S,., = (B, B.)'" (2.16)
k- sk
and that 3, and 3, have the expansion
Bn=BR+eB +1E€BT+ . (2.17)
It turns out that
B =p,=0 (2.18)

and

b= - 21(11m iis (J‘ ar ¥ "“’"’”’)’
(2.19)

where again ¢, and ¢, refer to the unperturbed regular solu-
tions of (2.1).

3. PERTURBATION EXPANSION OF BACKGROUND
TERM

Near a resonance the S matrix has a parametrization in
the form, as first given by Breit and Wigner,
1/2
Sm,n~M+bm,n! (31)

k—«
where b,, , is the background term. We have shown in the
previous section how to obtain « and /3 in the form of a per-
turbation expansion in €, defined in (2.3). We will now show
thatb,, , can also be obtained in an analogous manner. Todo
this, let us recall a useful representation of the .S matrix in
terms of the functions F, defined in (2.9). For the elastic
channels we have "

Spmm =F(—K,)/F, (3:2)

where — K,, meansthat the channel wavenumber K, in Fis
replaced by its negative value. Near a pole we can write

s NFO(_Km)'i'(k‘“K]FI(—Km)
- (k — K)F, + i(k — k)F,
Bm Fl(_Km) L&
—rx F, —2F,B’”’ (3:3)

where the index of Fdesignates the derivative with respect to
k at the pole «. Therefore the background term 4,,, ,,, is given

Fl(_Km)
by, =—————=28_. (3.4)

To obtain the elastic background term as a power series
in ¢, let us first calculate F, in the form
aF

=R =FV A eF VL EFR 0, (3.5)
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where the terms of higher order than € are neglected. Since
Fis a determinant of the matrix J we have

= 3 Det™J)= 3 (Det§)

m=1 m=1

+ Det "\(J) + €2/2 Det {"(J)), (3.6)

where Det ™ designates the derivative of the mth column of
J. If m£p, where p is the index of the pth closed channel for
which

J» =0, (3.7)
we easily find
Det {"(J )= Det (/) =0, (3.8)
where we have taken into account that
Jp~k — ko)~ €Ky jp, + O(€), (3.9)
where k, is given by (2.13). It follows that
Det {(J)
o (Ju g Jo g
- 2P(j)’_i( pmmp _ Zpm " mp ) m#p,
Jm N\ Jm I
(3.10)
where
P =1l (3.11)
isp
and
l o0
JU = J dr 7V . 3.12
pm 2K, J So Vo ¥m (3.12)

When p = m, the derivative of the pth column will give
for the diagonal ( p, p) element of J

Jop~Jp+ 562(k2j,’,' + J,’,},z’) +0(€); (3.13)
hence,
Det £(J) =j,P(j), DetP(J)=0 (3.14)
and
Det (/) = P (j)(kzj;; +J
. (J 15— 2y
#p
Z (l) (1) )), (3'15)
>1 P.IL]m
where
7e =—j @iz 32 f Gilr, V) Vit dF
1—1
(3.16)

which was obtained from (2.8) as the second iteration. We
should recall that F( — K} is obtained from (3.6) by replac-
ing K,, with — K, in Egs. (3.10), (3.14), and (3.15). Insuch a
case we have for the ratio F\{ — K, )/F,,

Fi=Ka) I3 aii
F, Jm Jm

)((_1__q_(—__j":r
Jp Ok \4K, K, j jm
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><( Jo " ar Lo Vom wm)z)

1
4K, K, jmim J 5

([ arsoron 17
+ J:o Y, Voo f,5 dr -[m U Vom ¥ dr’)

n

4K, jom Jm 12#1)1(1]1

Vo m dr’

([ artavuit [ Vit ar
0 0
[ wabutiar [ 17 Vit ar))
(¢] r
(3.17)
To obtain b,, ,,, we still require the ratio F,/F). Since 3,

is of the order O (¢€?) we have to calculate F,/F, only to the
zeroth order in €. Hence

FF " ij,,)
= P +2 3.18
T =F,= (J)( Z T (3.18)
and b,, ,, is
F(—-K LI
bm'mz_.'_(_'"_)_ﬁm/z(i z )+0(6)
F, 2
(3.19)

Let us now turn our attention to the inelastic back-
ground term b, ,. From the representation of the inelastic S-
matrix elements'*

52 _FKiFI-K,) F(-K,,

F? F

- Kn )
. (3.20)

Near the pole we can write approximately

2 _ Bn B 1 (
Sm,n - (k—K)z + k_K\Bnbm,m + ﬂmbn,n

_F()( _Km) —Kn))
—F ) (3.21)

where we have used (3.4) and the definition of the residue.
We have shown that the elastic background terms can be
written as

b =60 + 1B, (3.22)
in which case
F{—K,,—K,
B.b. + 8.0, — Pl =K = Ka) o) (3.23)

F,

if the leading term of Fy( — K,,, — K,), which is of the order
€, is calculated by a procedure similar to calculating F;.
Noting that 8 = O (€?) and taking into account (3.22) we no-
tice that the only contribution of the order € comes from
Fy(—K,,,—K,), hence (3.21) is

ﬁmﬂn 1 FEJS)(_Km’_Kn) 4
=(k—x)2_k—x( FO +0(6)>’
(3.24)

2
Son

where the index of F' means that this function is calculated to
this order in €.

Let us briefly show how Fi{ — K,,,, — K, is calculated
to the order €. Since the diagonal pth element of J is zero in
the limit € = O we can replace J, , by

J,p~4 ko gy + T2 + Lk, + TV, (3.25)
and F)| — K,,, — K, ) is
F-K,,—K,)=€F(-K,,—K,) (3.26)

In the Eq. (3.25) we have used (3.9). The determinant Fis the
same as F,, except that now the pth row and column are of the
order €°. Therefore F should be calculated to the order ¢,
hence F§in (3.24) is

9 p(—K,,

FO(-K,,—K,) =
0( m ) df

—K,) (3.27)

where the derivative is calculated for € = 0. The calculation
of (3.27) is straightforward, although lengthy and we will
only give the final result.

F(—K,,—K,)
P(f)im Jn (268m | Vi [¥p ) b | Vip | ¥ ) ¥ | Vi Itﬁn)) (U V| 850 1
‘_63 i ( pl m)
8ijm jn \ KmeKn.]p .]m ]m Jn.]n Kme.]m.lm .]p I#ZPJ" le ( 'p | I ¢
(Ul Vap| 40
l I ¢, l , 3.28
+{ .l ¥,)) — KK, Jojo i :;MK,J; (11 ¥.) + (Wl ¥,)) (3.28)
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where we have used the notation

(balV, ,,|¢,,>—j dr, V.0, (3.29)
and

S ALEA
_ L dry,v, f ar £ e ) e ) Vindh. (3.30)

In the derivation of (3.28) we have also used the expres-
sion for k, in (3.25) and in the Appendix we show how it is
calculated.

We can now calculate the inelastic background term.

From (3.24) we obtain
1/2 F(J) _K N _K 172
FPB, B,

T e K
hence,
FO—-K, ., —K,
bm,n = - _!_ 2 (0 “ 172 ) (332)
2 F(l '( ﬁm ﬁn)
When we use
( ll/ l pl lpp) _Um 2B K .Ip }p)l/z’ (3'33)
the background term is finally
< ¢m|an| ¢n>
2 2K, K,)"%pm
21/2'+
+ 1/2;
8(BuK, Koy Jp) dmn
() + {01 Y,)

man —

X

L#pm Kljl
21732
(ﬁ K, j' Jp)'”}mjn
s <¢,,|l|¢n>+<¢n|1|¢,,>].
I+#pn Kljl

(3.34)

The first term in (3.34) we recognize as the ordinary
distorted wave approximation for the scattering from the
channel m in the channel n. The last two terms come from
the coupling between the open channels m and n and the
channel where the unperturbed bound state is. It should be
pointed out that although the matrix elements (3.30) are sec-
ond order in V their overall contribution to (3.14) is first
order since these terms are divided by v/ which is first
orderin V.

4. TWO-STATE FORMULA

Let us apply the results to the simplest case: the two-
state problem. At the same time we will compare the ob-
tained results with the Feshbach formalism. We assume that
the channel 1 is open and that the channel 2 is closed. There-
fore there is only elastic collision in channel 1, with the possi-
bility of the internal excitations in channel 2. The second-
order correction to the resonance level, if the pth bound state
of the channel 2 is excited, is now
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1
2K,K\ jiJs Jst

X( J: Vo ¢, drj:wfl— V., b, dr
+ J: dr,V,, fi J: dr ¥V, ¢2), (4.1)

and the residue is

B= - m(f dri,Vy, ¢2). 4.2)

The results are in close analogy with the expression obtained
from the Feshbach theory.!> However, this is to be expected
since the difference between the two approaches becomes
evident when the complete set of the functions is introduced,
and for the derivation of (4.1) and (4.2) such a set was not
necessary. For example, when the present theory is applied
to the ordinary perturbation problem in a one channel case,
then the first-order correction to any bound state (or a reso-
nance) is given in the form similar to a known expression in
the Rayleigh-Schrodinger perturbation theory.'> However,
the second-order correction in the RS theory is given as the
sum over the complete set of eigenfunctions of the unper-
turbed Hamiltonian, but within the present theory this sum
is replaced by an expression involving only the state which is
being perturbed.

In the derivation of (4.1) and (4.2) we did not require the
use of the complete set of the unperturbed eigenfunctions,
hence, the results of the two procedures are similar. (The
only difference is that in the Feshbach formalism one makes
perturbation expansion of energy while here we expand the
wavenumber.) The difference between the two approaches
becomes evident if the degenerate case is treated '° or if high-
er-order corrections to the resonance level are calculated.

Let us now turn our attention to the background term.
For a two-level system the formula (3.19) becomes
by =t I

Ji J

X[;’c(‘tKszzJ,Jl U e 2'w))

_— d j V- dr'
4KK2j2 Ve (f r Vi, | f Vg, dr

+ f wafsdr | szm«/zldr')wl#
4.3)

The first term we recognize as the unperturbed S matrix
in the channel 1. The second term is a correction to the elas-
tic S matrix, coming from the interaction with channel 2.
This term can now be compared with the analog in the Fesh-
bach formalism. We find that the Feshbach form of b, ,, if
the relevant equations are solved in the first-order distorted
wave approximation'® looks like

I o (Kl Val )P
I ;f k*—k?

where the sum/integral extends over the complete set of the
functions of the channel 2. Hence the formula (4.4) involves

) (4.4)
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the use of the complete set of functions for the background
term, which in Eq. (4.3) is not necessary. The sum in (4.4) is
essentially replaced by a term which involves taking the de-
rivatives of the unperturbed solutions with respect to .
Since it is not obvious how these derivatives can be calculat-
ed, we will briefly discuss the properties of the solutions of
the one channel problem.

5. DISCUSSION

In the expressions for the perturbation coefficients of
the poles, residues, and the background term, it is assumed
that we know the complete solution of the unperturbed Ha-
miltonian. By complete, we understand that we know the
regular and irregular solutions together with the Jost func-
tions and their derivatives with respect to k. Therefore it
would be appropriate to review some of the properties of the
solutions of the radial Schréodinger equation

v =(V—-k?v, (5.1)
which is a representative of the uncoupled set of equations
(2.1). The channel energy is here represented with & 2, How-
ever, we should first recall that the derivatives with respect
to k of the Jost functions and the matrix elements in Eq.
{3.17) are not the derivatives with respect to the channel wa-

venumbers in (2.1). Therefore, we should transform d /dk in
these cases by

d dK, 4 k d

dk dk dK, K, dK,
in a particular channel n. In what follows we will assume
derivatives with respect to the channel wavenumber k in
(5.1) which must not be confused with & in (5.2).

Let us restrict our discussion of (5.1) to a particular set
of potentials which occur in atomic collisions. However, the
theory is of general validity, and for the potentials other than
those discussed here, one should appropriately modify the
relevant steps.

A typical potential in atomic collisions has a hard core!®
of the type

(5.2)

imV(r) = V(R), (5.3)

while for » < R, V() is infinite. In such a case the regular
solution of (5.1) is defined with the initial values

YIR)=0, ¢¥'(R)=1 (5.4)
On the other hand, the two irregular solutions £ *, defined as
lim f *(r) = exp( F ikr) (5.5)

are finite in the limit »—~R. From the definition of the Jost
functions, !’

JE=172k) 0t —¥fF), (5.6)
we obtain
fER)= —2ikj*. (5.7)

When & *is positive, i.e., k ? correspond to an open chan-
nel, we can easily find the relevant quantities entering the
expression for the background term (3.17). For example, the
derivative of the wavefunction with respect to & satisfies the
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differential equation

= — 2k + (V — k), (5.8)
where y=dy/dk. The regular solution of (5.8) is
= iJ. Gr,7)U(r)dr, (5.9)
R

where G (r, ') is given by (2.5). The derivatives of the Jost
functions with respect to & can be calculated from (5.6) and
they are

J*r = — (kT xinj* — (expl F ikr)/2ik)

X+ i + ik + o), (5.10)

where we have taken the limit 7— oo . Therefore, in principle
when & 2> O there is no basic difficulty in obtaining all the
relevant quantities entering the background term.

It is not at all evident that this is the case for the bound
states, and this point needs little more discussion. Let us
therefore assume that & 2 <0, and its value corresponds to
one of the bound states of (5.1). In such a case we can find a
useful expression which relates the Jost functions to the nor-
malization constant of the regular wavefunction. Multiply-
ing (5.8) with ¢ and (5.1) with ¢, and subtracting these two
equations, we obtain

d 7 r Y ’
— () — YY) = 2ky. (5.11)
dr
Integrating the equation and using the relationship
v=;"f"+i f", (5.12)
we obtain the well-known relationship'’
it =J Y dr. (5.13)
R

The last formula means that if we know ¥ and j~ then
j* can also be obtained. This fact will be useful a little later.
However, let us discussj . From (5.6) we obtain in the limit

r—o0,
J~ = (explikr)/2ik )iky — '), (5.14)

where it is assumed that & is positive imaginary. In general,
when £ is not a bound-state wavenumber, the regular wave-
function will exponentially increase for large 7 as ¥
~exp( — ikr), hence, no significant figures in the bracket of
(5.14) will cancel, which means numerical stability. This also
means that j~ can be calculated to any arbitrary accuracy,
without too much numerical difficulty. Since this is the case,
then also;~ andj~ can be calculated from (5.10) without too
much difficulty.

Similarly, we can show that f ~ can be calculated from
(5.1) by the backward integration and the procedure is nu-
merically stable. Therefore, from now on we assume thatj —,
S, and ¥ are known functions for the bound states.

That the same procedure does not apply forj* can easi-
ly be verified by calculating (5.6) for — . In such a case we
have

7T = (exp( — ikr)/2ik ) — ik — @), (5-15)

and since ¥ ~exp( — ikr), when £ is not at the bound state,
the significant figures in (5.15) will cancel. This means that
J* cannot be calculated from (5.15). However, we can use
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(5.13) to obtain j* and sincej~ and ¢ are known, which was
shown earlier, the procedure is numerically stable.

We still need j*, which cannot be obtained from (5.13)
since this expression holds only for the bound states and is
not valid in its small neighborhood. Therefore, we should
look for a different way to calculate j*. Let us differentiate
(5.12) with respect to k, and use (5.9) for ¢, hence,

FI i =i G e -, (516
and if we use (2.5),
Fr it =i [ e~ [ rovar
— j—;+. ) (5.17)
In the limit »— o we can show, using (5.13), that the second

and the third term cancel even though f * is an exponentially
increasing function. Hence we are left with

Jrairgt =i ff*(r’) Wr)dr, r—w (5.18)

or

jt=4i"* lim (er*f‘ dr — r), (5.19)

which relatesj* toj* and the irregular solutions f * and f ~.
It can be easily shown that the procedure (5.19) is numerical-
ly stable. ‘

However, for the calculation of j ™ weneedf *(r), but the
analysis shows that it is not possible to obtain f * (r) from the
straightforward integration of (5.1). The reason is simple: / *
is an exponentially increasing function and is not uniquely
defined by the boundary condition (5.5). We can nevertheless
obtain f* up to an undetermined constant by starting from
the Wronskian

S =T =2k, (5.20)

and if this expression is treated as the first-order nonhomo-
geneous equation for /', the solution is

fr= —f—(c —2ik fﬁ)

where Cis a constant determined at the lower bound. Since &
corresponds to a bound state and f ~ ~ ¢, the integrand is
singular at » = R and any node of ¢.
Using (5.4) and (5.1) it can be shown that near » = R the
regular wavefunction has expansion
Yri~4+0(4%, Ad=r—R.
Similarly, near any node of ¢ we have
Yin~¢'(r)a, +0(4;), 4,=r—R,,
where R, is the nth node of . Let us now write for C
C—2ik(j+)2(——--—l T - L )
x—R  “Six—R, WR,F/
(5.24)

where ¥V is the number of the nodes of . The solutionf * now
reads

(5.21)

(5.22)

(5.23)

1 N 1 1 "
+=_2'k‘+ J.dl
f I "[r—RJ“n;r—Rn W e
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1 N 1 1 _2
mwrt Emrrwr )
{5.25)

where we have replaced x by R. It can easily be shown that
f 7 satisfies (5.1). We can also show that in the limit 7—R the
value of f* is

fr= =2kt Y(R) = — 2ikj*, (5.26)

which is equal to (5.7). Therefore (5.25) indeed represents the
solution f * for the bound states. However, we can also show
that any function

F+=f*41Cf, (5.27)

where £ is defined in (5.25) and C is an arbitrary constant,
also satisfies the just mentioned conditions. Hence, F * is
also the irregular solution of (5.1), satisfying the boundary
condition (5.5). However, the background term (3.17) is in-
variant to the transformation (5.27), which can be proved by
noting that j* transforms as

=it = CiT, (5.28)
in which case all the elements in (3.17) containing C will
cancel.

In fact the whole perturbation theory is invariant to the
transformation (5.27), regardless of whether & belongs to the
bound state or not. This comes out from the fact that G (r, /),
defined by (2.5), is invariant to the transformation (5.27);
therefore, the Jost function (2.8) is also invariant. Since the
Jost function (2.8) is the basis of the perturbation theory,
then also the perturbation theory is invariant to the transfor-
mation (5.27). As the conclusion we can say that (5.25) can be
used in the calculation of the background term, although it
does not represent the unique irregular solution of (5.1).
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APPENDIX

Here we will calculate the third-order correction to the
resonance wavenumber (2.11), which is needed in the deriva-
tion of the inelastic background term b, ,, in (3.34). The coef-
ficient k4 can be obtained in two ways: either by directly
calculating d *«/de’ for € = O from the implicit equation
(2.9} or by calculating dx/de for a finite € and then looking
for the coefficients in the expansion

o - —‘;_f %E:k. +eky+ €2k, (A
The last procedure is sometimes more convenient and will be
used here. Since k&, = 0 it follows that F /Je is exactly zero
for € = 0 hence JF /Je starts with the order €. On the other
hand, dF /3k is of the order € but the next higheris €, as was
shown in Sec. 3. Therefore looking for £, in (A1) is equivalent
to finding JF /Je to the order €.

The derivative of determinant F is equal to the sum of
determinants in which we take the derivative of each column
separately. Therefore, if we take the derivative of the column
m which does not correspond to the column in which the
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diagonal element is zero in the unperturbed case (in our case
this is the pth column), then

{m)
o eFm, (A2)
de -
where F " is a determinant in which the mth and the pth

column are of the order €, except the elements (m,m) and
(P, p). These elements are

{p Py =Lelksj, +T5)) {A3)
and
(m,m)=eJ'? . (A4)

We now look for the contribution in F ' which is of the
order ¢, and this can be obtained by calculating dF ™'/ de for
€ = 0. When this is done we find

GF ™ =P(j)( _Jg,l:J‘,ﬁ; _J},,Z,I,,J(,:,'p
de Y Jm
J g JW gy
+ mi¥ ip pm'+. mp¥ piY im ] (AS)
I #p,m jm ji

Similarly we can calculate (A5) when m = p. In such a case
we find

gF'¥ =P(j)(‘i’3?) - Jomd ),
23 2 m#p jm
L
2 m#p jm
Jg
+y 3 e ) (A6)
i#p m#&p,i Jilm
Therefore we now have
JF AF ™
E = 62 2 ae . (A7)
Since dF /dk is
‘;_i =j,PUj) (A8)

the third-order coefficient &, is from (A1),
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ky = #z(«LSA__z 5 Lot + Il
-]f” 2 2 m#p jm
J(”'J('l)‘]“r)n
+3 3 M_) A9
m#p i#pm ]m.’i

The expression for k, can be much simplified if we use the
explicit forms of the matrix elements in {A9). For example
J . is given by (3.12). The higher-order elements are ob-
tained by iterating Eq. {2.4) and putting the series in {2.8).
After some algebra, when the following form of the Green’s
function (2.5) is used,

Gir, 7} = (W) 1) — dir) S~ (V) (A10)
we obtain the final form of &,
3 1 =
ky= ~
S TRy A KK, f a
Xf Vo f dr fonlr ) e Vo)
X f AP W W) ), (Al1)
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In inverse scattering theory, algorithms for solving the Gel’fand—Levitan equation normally
break down when poles in the reflection coefficient coincide. Here we present a method for
treating an arbitrary number of coinciding poles. We give the first explicit solutions for 3, 4, 5, 6, 8,

and 10 poles.
PACS numbers: 03.80. + r, 94.20. —y

1. INTRODUCTION

The Abel integral equation has been the basis for most
work on ionospheric structure determination during the last
half century. Using this approximate method, ionospheric
electron densities have been computed from scattering data.
With the same data it is possible to employ an exact full-wave
method, based on the Gel’fand-Levitan equation,’ to obtain
a much improved determination of the ionospheric electron
density. Since the data used is identical for the approximate
and full-wave theories, there is no need to modify experimen-
tal equipment; the difference in treatment is essentially
computational.

In principle, the full-wave inverse scattering method is
exact. However, in practice, approximate analytic or nu-
merical methods are normally employed to solve the
Gel'fand—Levitan equation. To circumvent the possibility of
round-off errors, numerical instabilities, etc., in solving the
Gel’fand-Levitan equation numerically, we have solved the
equation exactly, using a generalization of Kay’s® procedure
for rational function reflection coefficients. Previous at-
tempts along these lines have given usable results when the
number of poles in the reflection coefficient is not too large (3
poles®; 1 pole*; 3 poles®; 1, 2, and 3 poles®),

In previous communications”® we presented a general-
ized procedure for finding exact solutions to the Gel’fand—
Levitan equation in inverse scattering theory. Our procedure
is applicable to the case in which the reflection coefficient
r(k } is a rational function of the wave number k. Using our
procedure, we can calculate the scattering kernel X (x,t ) from
r{k ), and we obtain the potential ¥ (x), which is related to the
scattering kernel by the equation

Vix)= 2—d—K(x,x). (1)
dx

One step in the procedure involves the solution of # simulta-
neous linear equations (with complex coefficients), where n is
the number of poles of #{k ). (There is one set of n simulta-
neous equations for each value of the distance x.) The proce-
dure breaks down whenever two or more poles coincide, be-
cause then the corresponding rows of the determinant of the
coefficients are equal, so the determinant is zero, for all val-
ues of x. Here we present a modified procedure which over-
comes this difficulty.

2. GEL'FAND-LEVITAN EQUATION

In this section we solve the Gel’fand-Levitan equation
for the case
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rik) = const/(k — k,)", (2)
in which there are n coinciding poles. Because of the require-
ment”® that {0) = — 1, the constant in Eq. (2) must be

—{ — k,)". Thus we have
k)= —(—k)"/lk — k)" (3)

The additional requirement®® that r*(k ) = r{ — k) (for all
real k ) forces k, to be purely imaginary. With these two con-
ditions satisfied, it is automatically true that |rk }| <1 for all
real k, another necessary property> of the reflection coeffi-
cient. Finally, k£, must be in the lower half-plane, because we
assume that 7{(k )is analytic®® for all k in the upper half-plane.

AsinRefs. 7 and 8, we begin with the Gel’fand-Levitan
equation

R(x+t)+K(x,t)+fx K2Rz +1t)dz=0, (4)

which can be rewritten as
X

Rx+1t)+ K (x,t)+ K\(x,2)R\(z+t)dz=0, (5)

where

R (x) = R,(x)6 (x) (6)
and

Kx,t)=K,(x,t)f(x +t). (7

We again let

Rix)= Lr e~ *rk) dk. (8)
27 J_

Substituting (3) into (8), and using (6), we find that

R (x)=Bx" e~ 9)
where

B = —(ik,)"/(n — 1)}! (10)
As in Refs. 7 and 8, we assume

K(xt) = 3 fu (e, (11)

where the summation is over integer values of a from 1 ton
and from — 1 to — n; that is, the summation is over 2n
values of a.

We now substitute (9) and (11) into (5). The result may
be written in the form

E+F+J=0, (12)

in which
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E=B(x+1t) e kbx+1) (13)

F= gfa(x)eﬂ”’, (14)
and

7= S fulxjem Bz 1) "l e+ rgz (15)

To evaluate the integral in (15), we make the substitution
y =z + t and use the fact that

_ d _ -1
n lebyd —_ _1r+1b r(n— n reby‘ 16
[roea= 5 i—iree Ly
We find that

J=C+ D, (17)
where

C=lefa(x}e_“"‘(n — 1

X[ - (—1)’+1 (x+t)n7’e(aa7ik,"x+t)]}
~ila, —ik) (n—r)

and (18)

D= —BS f.xle™ " (= 1)+ n — 1)(a, — ik,)~".
” (19)
From (12) and (17), we have
C+D+E+F=0. (20)

We shall show that there is a solution to (20) for which
C + E =0and D + F = 0 simultaneously.
Ifweseta_, = — a, in the equation D 4 F = 0, the

equation becomes
( . l)n + 1

; SatX)e™ + (tk\)" £ o (x)e m =0
(21)

Equation (21) will certainly be satisfied if we let

S+ B, o 22)

(—a, — iky)

for all a. Thus,

foalx) =01 +a,/ik))" fo(x) (23)
and

faX) =0 —a,/ik))" f_,(x) (24)

for all a. Equations (23) and (24) are consistent [for nonzero
f.(x)] only if

k/a,? + k2 =1 (25)
Solving for a,,? in (25), we obtain

a,’ =k B "—1), (26)
where

B = expl2mi/n) 27

and m takes on the integer values from 1 to n. Thus, we may
leta, and a _, be the two square roots of k,%(3 ~* — 1), for
positive a.

Turning now to the equation C + E = 0, we rewrite it
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FIG. 1. Potential ¥ (x) vs distance x for 3, 4, 5, 6, 8, and 10 coinciding poles.
All poles are at — /. In this and all other graphs, the potential is zero for
negative x.

in the form
50 g
S0 e AR )

Lo (28

The left side of Eq. (28) is a power series in ¢ in which the
coefficients are functions of x. Equation (28} is satisfied only
if each coefficient is zero. For each power of ¢, this condition
may be written as

"ot wx (=17
(n—s— 1) +§a: [f"(x)e (@, —ik,)"*
o Lk —al x4
R e R

which must be satisfied fors =0, 1, 2,...,n — 1.
Using (23), we rewrite (29) in the form

n—

< x
M‘(x X)Ja X| = , 30
2 Mol ol = (30)
j=1,2,3,...,n, where
110 3e T T T -
= 08 <
> LOCATIONS OF
Iy MAXIMA
E{J 06~ 4e -
=
EJ 04+ 5e _
: .
02 8e 10e
1 1 1
° 0 1.0 20 3.0
DISTANCE , x

FIG. 2. Locations of maxima in potential vs distance graphs. Numbers
represent the number of coinciding poles. All poles are at — /.
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(ik,)" 7=0 g

Equation (30) is a set of n simultaneous linear equations in #
unknowns—the functions £, (x). (That is, there is a set of n
equations for each value of x.) The matrix M, is different
from the matrix which would have been obtained using our
original procedure.”® The determinant of M,, is nonzero.

After we have calculated the f,, (x) for a set of values of x,
we calculate K (x,x), which is given by

Kbxx)= 3 fulole™ + (1 —ia,/k)e "] (32)

Equation (32) was derived by substituting (23) into (11).

The potential ¥ (x)is found from X (x,x) using Equation
{1). We have plotted graphs of ¥ vs x for different values of ,
all with k, = — i. There is no loss of generality in restricting
k,tobe — ibecause multiplying k, by a positive real number
only changes the scale. If £ is a positive real number, then
from Eq. (26),

a,(5k,) = 5a,(ky). (33)
That is, when we multiply k, by a constant, the g, are multi-

plied by the same constant. {Here and in what follows we
have inserted additional arguments into a,,M,, and other

a
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FIG. 4. Potential V (x) vs distance x for 4 coinciding poles at — i.
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FIG. 5. Potential ¥ (x) vs distance x for § coinciding poles at — /.

quantities to indicate the dependence on &,.) By substituting
Eq. (33) into (31) we deduce that

M (x/E6k) =8 """ M, (x k) (34)
Then, using Egs. (30) and (34), we obtain

Salx/E,6K\) = € falx k). (35)
It follows from Egs. (32} and (35) that

K (x/Ex/8,8k,) = Ek,\(x.x,k,). (36)
Because the potential ¥ involves a derivative of X

V(x/Ex/EEk) = E2V (x,x k). (37)

In other words, if the poles move farther away from the ori-
gin by a factor of £, then the peak in the potential becomes
higher by a factor of £ > and moves to a value of x which is
smaller by a factor of £.

3. RESULTS
In Fig. 1 we have plotted the potential versus distance
forn=3,4,5, 6,8, and 10, all with k<, = — i. In each case

the potential is zero for all negative x, as can be seen from
Egs. (1) and (7). The potential rises to a maximum at a posi-
tive value of x and then decreases. As n increases, the peak in
the potential moves downward and to larger x values. This
can be seen more clearly in Fig. 2, which shows the position
of the maximum for n = 3, 4, 5, 6, 8, and 10.

InFig. 1, all curves are drawn to the same scale and thus
can be directly compared. However, the scale chosen, al-
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FIG. 6. Potential V' (x) vs distance x for 6 coinciding poles at — /.
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FIG. 7. Potential ¥ (x) vs distance x for 8 coinciding poles at — /.

though appropriate for the smaller values of #, is less advan-
tageous for the larger values of n. Therefore, we have plotted
the individual curves to more appropriate scales in Figures
3-8. Note that with increasing n, the curves rise more and
more slowly as x increases from zero.

In graphs of potential ¥ vs distance x for »n coinciding
poles at k, = — Jj, the value of x at which ¥ is a maximum
depends on n. (We let x, denote this value of x.] By altering
the position of the poles, we can change x,, to any positive
value. For 3 poles at k, = — i, x, = 0.33, but if
k, = —0.33i, x, = 1. For the 6-pole case, x, = 1.57 if
k, = —1i, whilex,=1if k, = — 1.57i. For 10 coinciding
poles, x, = 3.325if k, = — i, whilex, = 1ifk, = — 3.325i.
Figure 9 shows 3-, 6-, and 10-pole cases, all with x, = 1.

In Fig. 10 we have plotted a 3-pole case with x, = 1 and
a 10-pole case with x, = 3. (For the 10-pole case,
k,= — 1.1083i))

We also considered the effect on the potential of start-
ing with the case of 3 coinciding poles, all at — /, and then
moving the poles slightly apart. Specifically, we considered

) = kikaks _
(k — k\)k — ko)(k — k)

Case(a) k, =k, =k; = — 1.

Case (b): k, = —0.999i, k, = — i, ky= — 1.001..
Case(c): k;, = — 099, k, = —i,k;= — L.OLL

For case (a), we used the new procedure described in this
paper. For cases (b) and (c), we used the procedure described
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FIG. 8. Potential ¥ (x) vs distance x for 10 coinciding poles at — i.
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FIG. 9. Potential ¥ (x) vs distance x for three coinciding pole reflection
coefficients: 3 polesat — 0.33/, 6 polesat — 1.57/, and [0 polesat — 3.325i.
Numbers represent the number of coinciding poles.

in our previous communications.”® The results were that for
the same values of x, the differences between the potentials in
cases (a) and (b) were at most in the 5th significant digit. The
differences between cases (a) and (c) were at most in the 4th
significant digit. [If cases {b) and (c) were plotted to the same
scale as case (a) in Fig. 3, the differences between (a), (b), and
(c) would not be observable.] Thus in this case the procedure
is stable.

4. DISCUSSION

In this communication we have presented a new in-
verse-scattering procedure for treating an arbitrarily large
number of coinciding poles in the reflection coefficient. (In
previous communications we treated arbitrarily large
numbers of noncoinciding poles.) Since our procedure for
solving the Gel’fand-Levitan equation is exact, we have cir-
cumvented the difficulties which often arise in numerical
solutions, such as numerical instabilities and the use of ex-
cessive amounts of computer time and memory. We expect
that our procedure will give rise to highly accurate on-line
inverse scattering computational capability which should
make possible improved ionosondes for ionospheric struc-
ture determination.
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FIG. 10. Potential ¥ {x) vs distance x for two coinciding-pole reflection
coefficients: 3 poles at — 0.33/and 10 poles at — 1.1083/. Numbers repre-
sent the number of coinciding poles.
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A constructive approach to bundles of geometric objects of finite rank on a differentiable manifold
is proposed, whereby the standard techniques of fiber bundle theory are extensively used. Both the
point of view of transition functions (here directly constructed from the jets of local
diffeomorphisms of the basis manifold) and that of principal fiber bundles are developed in detail.
These, together with the absence of any reference to the current functorial approach, provide a
natural clue from the point of view of physical applications. Several examples are discussed. In the
last section the functorial approach is also presented in a constructive way, and the Lie derivative

of a field of geometric objects is defined.

PACS numbers: 04.20. — q, 02.40. + m

1. INTRODUCTION

Classical tensor calculus, developed during the latter
part of the last century by Ricci and Levi-Civita, was soon
found to be the most appropriate formalism for studying
local physical laws in an invariant way. After its application
to special and general relativity,' tensor calculus became a
common tool in mathematical physics and the main formal
link between geometry and physics itself.

As early as 1918 it was, however, discovered that cer-
tain local structures which are relevant both to physics and
geometry do not have tensorial character, the most well-
known example being, of course, given by connections [Levi-
Civita (1917), '* Weyl (1918),” and Cartan (1923)*]. Early at-
tempts to give definitions of “geometric objects” general
enough to also include such nontensorial entities date back
to the thirties [Schouten and Haantjes (1936)%], but a fully
satisfactory and intrinsic definition was found only after the
work of Nijenhuis during the fifties [Nijenhuis (1952),°
(1960),° Haantjes and Laman (1953 a,b),” and Kuiper and
Yano (1955)%]. More recently, the matter was reconsidered
by Salvioli (1972),° who gave a natural and beautiful descrip-
tion grounded on a “functorial approach”.

Roughly speaking, an object defined on a differentiable
manifold is a geometric object if we know its transformation
law for any change of local coordinates. Tensors are obvious-
ly geometric objects, but of a very restricted type; their trans-
formation laws are in fact “homogeneous” and involve only
the Jacobian matrix of the coordinate transformation. To
allow more general objects like, for example, connections,
higher derivatives of the coordinate transformation must be
taken into account.

In recent years, owing to their greater generality, geo-
metric objects other than tensors began te enter physical
applications, because in many cases using objects more gen-

“Work sponsored by C. N. R.-G. N. F. M.
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eral than tensors is essential [see, e.g., Anderson (1967),"
Krupka (1979a,b),'" Kijowski and Tulczyjew (1978),'? Pras-
taro (1980),"* (1981),'* Modugno (1981),'> Pommaret
(1978),'® Ferraris, and Francaviglia, and Reina (1981)"]. In
fact, in spite of the widely known and systematic use of ten-
sorial methods in mathematical physics, restricting ones at-
tention to tensors may often turn out to be misleading.

Motivated by physical applications we have reconsi-
dered the mathematical foundations of the theory of geomet-
ric objects, providing for them a new direct approach, which
adapts the nice construction proposed by Haantjes and La-
man (1953a,b) to the more flexible language of differential
geometry of fiber bundles. Our approach is less general than
that of Salvioli because it refers explicitly to geometric ob-
jects having finite rank. However, it has the advantage of
being constructive and able to handle in a simple, intrinsic,
and detailed way most of the bundles of geometric objects
which are relevant to mathematical physics. It, in fact, pro-
vides explicit constructions for the “lifting functors” of Sal-
violi’s method and allows much easier calculations.

2. FIBER BUNDLES ON MANIFOLDS

1. Fields of geometric objects naturally arise as sections
of suitable bundles. In the following we shall restrict our-
selves to the bundles of geometric objects having finite rank,
because they have the property of being fiber bundles.

Therefore, let us begin by recalling the concepts of fiber
bundle theory we shall need later. We adopt the following
definition.

Definition 2.1: Let M, F be C “-manifolds and G a Lie
group. A fiber bundle over M (with structure group G and
standard fiber F) is a quintuple (B, M, m; G, F), where 7:
B—M is a surjective map from a differentiable manifold B
onto M, if the following conditions are satisfied. (i) G acts
effectively and differentiably on F; (ii) there exist an open
covering {U, } of M and homeomorphisms (called local tri-

© 1983 American Institute of Physics 120



vializations)
1.7 (U, )=V, XF
such that the diagram

T U, XF

U,) Ta
T

u

is commutative; (iii) there exist maps
mqg:U,z = U,nUz;—G (called transition functions) such
that

Ta'Ts 'y f) = 0:imap(plf) VpeUup, feF.

Remark 2.2: The transition functions above satisfy the
compatibility relations mg, (p) = [m.z()] ~' and
mg(p)mg, (P)m. . (p) = 1€G, pel,nUgnU, . Therefore, they
form a 1-cocycle with values in the sheaf of germs of local
differentiable functions from M to G [for more details see
Hirzebruck (1978)'8].

Remark 2.3: Note that given a covering {U, | of M and
a set of G-valued transition functions m,; satisfying the pro-
perties of Remark 2.2 one can construct a fiber bundle B over
M with structure group G and standard fiber F. We first form
the disjoint union B of all the sets U, X F. The bundle B is
then obtained from B by identifying the points (p,f )€U, X F
and (p,m 4 (p)f )€U, XF for any o, and peU ;. One can
show that such a reconstruction does not depend on the
choice of the covering {U,, }.

2. As examples of the preceding construction we may
quote the following.

Example 2.4: A Lie group acts naturally on itself on the
left (or on the right). Therefore, one can construct fiber bun-
dles having the structure group G itself as standard fiber.
These are called principal G-bundles and will be denoted by
(P, M, 7; G). Principal G bundles may be characterized as
follows. A quadruplet (P, M, 7; G) is a principal G bundle if
and only if the following prescriptions are satisfied: (i) G is a
Lie group, P and M are C ® manifolds, and m: P—>Mis a
surjective map of maximal rank; (ii) there exists a right (or
left) action R: P X G—P of G on P which is free [i.e., if peP,
£<G, and R (p,g} = p then g is the identity of G], differentia-
ble, and such that M = P/G [i.e., YVpeP, geG,

IR (pg)] = mlp)].

Example2.5: Let (P, M, 7; G) be a principal G-bundle, F
be a manifold, and p:G— < (F) be a representation of G into
the group & (F) of diffeomorphisms of F. According to Re-
mark 2.3 one can construct a fiber bundle (B, M, 7'; p(G),F)
by using the composition of p with the transition functions of
P. An alternative well-known procedure consists in taking
the quotient of the manifold P X F with respect to the equiv-
alence relation defined by the following group action,
p:PXFXG—-PXF, induced by

P/, 8y—pgple) ™ f). (1)
To this bundle we shall give the name of bundle of objects of
type p associated with IP.

Example 2.6: In particular, whenever G admits a repre-
sentation A:G—GL(V) in the linear group of some vector
space V, by the same procedure we can construct bundles

a
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having V as standard fiber and A {G) as structure group.
These are called vector bundles over M (associated with P).

Example 2.7: Whenever G admits a representation
a:G-IGL (A) in the affine group of some affine space A we
obtain affine bundles (associated with P), having A as stan-
dard fiber. Note that any vector bundle can be improperly
considered as an affine bundle by identifying GL (V) with its
isomorphic copy contained in IGL(V), where V is considered
as an affine space. This procedure can be inverted, in the
sense that given an affine bundle (B, M, m; G, A) we may
define an associated vector bundle B’ having as fiber the vec-
tor space V underlying the affine fibers A of B.

3. BUNDLES OF GEOMETRIC OBJECTS

1. Among the fiber bundles over M with given fiber F
and structure group G, we shall describe here an important
subclass, whose transition functions m,z(p) are constructed
starting only from the differentiable structure of M. This is
the original viewpoint of Haantjes and Laman, which will
here be briefly recalled and set up in slightly different lan-
guage, in order to prepare us for the alternative description
which will be given later.

Let {(U,,,@. )} be an atlas of M. For any pair of overlap-
ping charts (U, ,@,),(Ugz.@;)), there exists a (local) C »
diffeomorphism

Pos = Pa®s " PpUg)>0a(U,p) (2)
between open subsets of R”. The local diffeomorphisms @4
are usually called coordinate transformations. OQur next task
will then be to construct transition functions out of these
local diffeomorphisms of R".

First of all, we note that for any point p€U,,; and for any
&, one can construct a local diffeomorphism 50:8 {p)of R"
into itself such that @ _4(p)(0) = 0, by defining

B,5(p)x — D [x + s(0)] — @, (p) (3)

for any xeR" such that x 4 @,(ple@y(U,,; ). The local diffeo-
morphisms @, (p) satisfy the following conditions:
[Bosp)] ™" = Ppolp) and B15(p) By, (p) B (p) == ichy for
any peU, nUgnU,,.

2. Now let Z {R"} be the pseudogroup of all local dif-
feomorphisms ¥ of R" into itself such that ¥ (0) = 0. We
remind the reader that [D¥ (0)] ' exists, where the linear
map DY (0):R" —R" denotes the derivative of ¥ at 0. For any
YeZ (R") we define t (¥ ) to be the Taylor expansion of ¥ at
0 up to and including the order k0. Two local diffeomor-
phisms ¥, ¥’eZ (R") are said to agree to the order & (at 0) if
1*(¥) = ¢ *(¥’). This is obviously an equivalence relation.
The equivalence class j(¥ ) may be represented as follows:

J4(¥) = (0,D¥ (0),D2¥ (0),...D ¥ (0)),

where the symmetric r-linear operators D "¥ (0):(R")—R"
denote the rth order derivatives of ¥ at 0.

Let G*(n;R) = { j*(¥)|WeZ (R")} denote the quotient
set of Z ,(R") under the above equivalence relation. It is easy
to show that G¥(n;R) is a {real) Lie group with respect to the
natural composition law:

FE) = ()
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In particular, when & = 1 we recover the general linear
group GL(m;R).

3. Since all the local diffeomorphisms @4 (p} defined in
Sec. 2. 1~belong to Z, (R") we may consider their & th order
jets /* (@4 (p))eG *(m;R). Then, for any U, and any integer
k>0 we may define functions @ %5:U_;—G “(n;R) as follows:

P Lpip—i* [Pasp)]. G
One may easily check that the functions @ §B defined in this

way are C * functions from U, into G “(n;R). Moreover,
they satisfy the following conditions:

[P “aplP)] =" = P “salp)

(i) “ap (P} D 55 (P) P *oulP) = 1,
where 1 = j¥(id, ) denotes the identity of the group G* (n;R).

Remark 3.1: By this last result we see that the functions
& %, may be considered as transition functions for a fiber
bundle having structure group G* (n;R), because they form a
1-cocycle with values in the group G* (n;R).

4. Now let F be a manifold on which a Lie group G acts
effectively and differentiably and p: G ¥(n;R)—G be a group
homomorphism onto G. Then we have maps

given by mz(p) = p(® %4(p)), which “lift” the differentiable
structure of M into G-valued transition functions. From
these data we can construct a fiber bundle B over M with
standard fiber F and structure group G, which will be denot-
ed by (B, M, 7; F, G, p). We then give the following definition:

Definition 3.2: (B, M, 7; F, G, p), where p:G X(n;R)—G, is
called a bundle of geometric objects of type p of finite rank
(<k)

The bundles of geometric objects defined in this way fit
into the scheme of Salvioli. It can be proved, in fact, that they
satisfy all the properties listed in Salvioli (Ref. 9, p. 259).

We remark that the definitions given by Salvioli extend
to also cover geometric objects of infinite rank. The direct
approach we outlined above may also be extended to this
case by relying on suitable Fréchet manifolds, i.e., by allow-
ing the use of infinite jets of mappings.

5. We remark that, in differential geometry and in its
recent applications to physics, a central role is played by
principal fiber bundles and that, moreover, all fiber bundles
can be considered as associated with some suitable principal
fiber bundle.

Our next task is then to show that the construction we
outlined above is, in fact, in agreement with this spirit, in the
sense that all the bundles of geometric objects covered by
Definition 3.2 are associated with certain principal bundles.
This will provide us an alternative approach to the class of
bundles considered, which, as we shall see later, is more
manageable for applications.

Let us then proceed as follows. Given a C “-manifold M
and an integer k (1<k < o), for any C *-function keC *(R",
M), the k th order jet /*{4 ) of & at OcR" is naturally defined by
reverting to any local parametrization of M. We denote by
IL* (M) the set of all the jets /(A ) such that & ~" exists.

Let us now consider the quadruple
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(L*(M),M,7*;G * (n,R)), where 7*: LM)—M is the canonical
projection defined by 7* [/* ()] = 4 {0). From the construc-
tion above, we see that there exists a canonical right-action of
G* (n;R) on L5(M), which is given by

(), J* (¥ Wi ().

It is easy to check that this defines a principal G¥(n;R)-bundle
over M [see Example 2.5].

Now let p:G *(n;R}—G be a group homomorphism and
F a manifold on which the Lie group G acts effectively and
differentiably. We see immediately that the bundles of geo-
metric objects of Definition 2.3 are the bundles of type p
associated with LXM) in the sense of Example 2.6. Our claim
1s thence proved.

The principal bundles L(M) will be called bundles of
k th order frames on M. This terminology is motivated by the
fact that IL'(M) is isomorphic with the bundle of linear frames
of M.

4. EXAMPLES

1. According to our previous remarks, all the bundles of
geometric objects of types p are associated with some of the
principal bundles ]L"(M), which therefore are, in a sense, the
prototype of such bundles.

Note that L“M) is associated with L* (M) whenever
k '>k, thanks to the existence of a canonical epimorphism
from G *'(n;R) onto G “(n;R). As a consequence, if a bundle B
of geometric objects of type p is associated with L¥(M) it is
also associated with all principal bundles L* (M) with k > k.
The smallest integer k such that B is associated with L*(M) is
called the rank of B.

Example 4.1: All the bundles of tensors over M may be
obtained as vector bundles associated with the bundle of geo-
metric objects L'(M), by means of suitable linear representa-
tions of G '(n;R).

For example, the tangent bundle TM is obtained from
the canonical isomorphism /:G '(n;R}—GL{n;R) while the
contangent bundle T*M is obtained from the inverse trans-
pose isomorphism i*:G '(n;R)}>GL(n;R) defined by

PP LGP ) (5)

The tensor bundies T4 (M) are then obtained by tensorizing
the above constructions; analogously for the bundle A? (M)
of differential p-forms.

Example 4.2: Let det: GL (n;R)—R* be the determinant
homomorphism. We denote by 4 the composition 4 = (de-
t)-i:G '(n;R)—>R*. From the linear representation 4 we can
construct a line bundle det(M), called the determinant bun-
dle of M, whose sections are the fields of n-vectors on M.
Analogously, we can construct the dual bundle det*(M) by
using the linear representation A * = (det)-i*. Its sections are
the fields of n-covectors on M and, therefore, there is a natu-
ral isomorphism between the bundles det*(M) and A "(M).

Example 4.3: Let U(1) be the unitary group. By relying
on det(M) one can construct a principal U(1)-bundle of geo-
metric objects U(M). This can be done by considering the
epimorphism «:G '(n;R}—U(1) defined by
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«j'(¥) — expliln|d (j{¥))I], (6)

or shortly . = exp{i In|4 |). The conjugate bundle U*(M] is
obtained in a completely analogous way, by relying instead
on the epimorphism «* = exp ( — i In|4 |}. To the bundle
U(M), which enters some recent unified theory of gravitation
and electromagnetism [Ferraris and Kijowski (1981)'°], we
shall give the name of unitary bundle of M.

Example 4.4: Let us now consider the bundle L? (M). We
define a natural left action of G *(;R) on the vector space
Ti(R") = R" ® (R")* & (R")* by the following explicit rela-
tion:

(#h230be) = (gal begizic + Zagii)s (7)
where (gj .#x) and I" ;. are canonical coordinates in G *(m;R)
and T} (R"), respectively, and (g ‘.25 )» denotes the inverse of
(#}»#4)- The fiber bundle C(M) associated with L% (M) via the
affine representation (7) above is an affine bundle of geomet-
ric objects, whose sections are easily recognized to be the
linear connections over M. For this reason the bundle C(M)
will be called the connection bundle of M. It is easy to check
that the vector bundle canonically associated with C(M) is
the tensor bundle T} (M).

Example 4.5: We can now define a further bundle by
“taking the trace” of C(M), namely by considering the fol-
lowing left action of G *(m;R) on (R")*:

(i )da) = Aag) + zaghc), (8)
where A, are coordinates in (R)*. The mapping (8) is ob-
tained by taking a suitable trace in (7). It is easily seen that (8)
is truly an action of G *(n;R) X (R™)* into (R")* and that it
defines an affine bundle D*(*M) over M, which will be called
the dilatation bundle of M. This terminology is suggested by
the fact that the sections of D*(M) are linear connections on
the vector bundle det*(M)~A" {M), whose structure group is
the group of dilatations in R". We can easily realize that the
vector bundle associated with D*(M) is the cotangent bundle
T*M. There exists, of course, a dual construction, which
gives a bundle D(M) whose sections are connections on
det(M).

2. Other constructions involving the bundles of affine
frames, projective frames, and spinor frames are currently
under investigation and they will be the subject of further
publication.

5. LIFT OF DIFFEOMORPHISMS AND LIE DERIVATIVES

In this last section we shall prove our main concern, i.e.,
we shall show that the construction presented above enables
one to define in an intrinsic and canonical way the functorial
lift of (local) diffeomorphisms of M to any bundle of geomet-
ric objects of type p and finite rank. This canonical lifting
will provide more explicit formulas for the Lie derivative of a
field of geometric objects.

Note added in proof: A more extended version, contain-
ing a detailed discussion of U{M] bundles and their role in
providing a possible characterization of the electric charge,
will appear in J. Math. Pures Appl. Phys.

1. Let k>1 be an integer. Let 8: M—M be a local diffeo-
morphism of M. There exists a canonical lift L* (8 ):L* (M)
—LXM) such that the following diagram is commutative:
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L*(9)

L*(M) L*(M)
™ 7*
M d M

and L@ is a local diffeomorphism which commutes with
the natural right action of G¥(n;R) on L*M). In fact, the local
diffeomorphism L@ ) is defined by the following relation:

L(0): (b }=j*(6h), (9)

where 4:U (0)C R —M is a local diffeomorphism.
Itis easy to prove that the lifting L*:6—L* (8 ) so defined
satisfies the following properties:

L*(idy) = id,x py,» (10)
L4(0,-6,) = L*(6,)-L4(6.) (11)

Therefore, L* defines a (covariant) functor from the category
of manifolds with local diffeomorphisms to the category of
principle fiber bundles with principal fiber bundle
morphisms.

2. The functorial construction above can be extended to
any bundle of geometric objects of type p and finite rank k
(B, M,m;F,G, p) by the following procedure. First we remind
the reader that, according to Sec. 3.5, the bundle B is asso-
ciated with the principal bundle L*(M) via the canonical pro-
jection m{p): LM) x F—B defined by the group action p [in
the sense of Example 2.5]. Let us denote by 7 the projection
of LX(M) X F onto the first factor L¥(M). Then there exists a
local diffeomorphism p(& ):B—B such that the following
(three-dimensional) diagram is commutative:

L4(6)Xid, .
LA (M) X F (6)Xid, ]L"(M)XIF

\ L) /
L* (M) - L¥(M)
B ”/ p(@) /
~7 R

o
In fact, p(@) is defined by the following prescription:

P8 ):mip) /A, £ 1—mlp) /(64 )£ ), (12)
for any (j*h, f)EL*(M) X F. The relation (12) is well defined,
because L* commutes with the group action of G*(1;R).

It is easy to show that (12) defines a local isomorphism
of bundles p(6 ):B—B which, moreover, satisfies the required
functorial properties:

plidy) = idy, (13)

p(0::6,) = pl6,)-p(6,). (14)
Therefore, setting B = p(M) we have a covariant functor p
from the category of manifolds with local diffeomorphisms
to the category of bundles of geometric objects of finite rank
with local bundle-isomorphisms. It is obvious that in the
particular case F = G “(m;R) and p = id _, (g the functor p

n:R}
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reduces to the functor L*.

Itis straightforward to prove that the covariant functor
p defined above satisfies all the required properties in order
to make (B, M, p) a bundle of geometric objects in the sense
of Salvioli.

3. In order to define the Lie derivative of a field of geo-
metric objects along a vector field X on M, we may now apply
the standard procedure described in Salvioli (1972), making
explicit the functor p.

Then let 6, be the local 1-parameter group of diffeomor-
phisms generated by a vector field X on M and let 8:M—B be
a {local) section of a bundle of geometric objects
(B,M,m;F,G, p) of finite rank k> 1. The following relation,

B.: xeM—p(6,)~ ' [B-6,(x) | em™ '(x), (15)

defines a one-parameter family of local sections of B. Ac-
cordingly, we may define the Lie derivative of the (local) field
of geometric objects 3 as follows:

L BxeM %[B,(x)] LO. (16)

It is easy to check that L,/ defines a (local) field of vertical
vectors over f3, i.e., the following conditions hold;

(i) mg-(LxB) = B,

where 7y : TB—B is the canonical projection;

(it) [Tr{LyB)](x) =x, VxeM,

where T TB—TM is the tangent map of the bundle projec-
tion 7.

For further properties of Lie derivatives of geometric
objects we refer the reader to Salvioli {1972) or Yano
(1955).%°

Note added in proof. A more extended version, contain-
ing a detailed discussion of U(M) bundles and their role in
providing a possible characterization of the electric charge,
will appear in Annales Inst. H. Poincaré.
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We consider classical solutions for the strong gravity theory of Salam and Strathdee in a class of
metrics with positive, zero, and negative curvature, It turns out that such solutions exist and their
relevance for quark confinement is explored. Only metrics with positive curvature (spherical
symmetry) give a confining potential in a simple picture of the scalar hadron. This supports the
idea of describing the hadron as a closed microuniverse of the strong metric.

PACS numbers: 04.20.Jb

INTRODUCTION

We shall discuss strong gravity theory' when both (g
and /) metrics admit the same three-parameter continuous
group of motion described by infinitesimal generators £
(o =0,1,2,3,;@ = 1,2,3,) and the matrix M = ||£ || is of rank
two so that the minimum invariant varieties are two-dimen-
sional surfaces of constant curvature. The three cases corre-
sponding to positive, zero, and negative curvature will be
considered. The first possibility corresponds to a spherically
symmetric metric and its general solution (for both fand g
metrics) has been found.? The possibility of having quark
confinement in the background f metric was analyzed® for a
particular case (taking g,,, = &,,, ). The analysis is applied to
our case in Sec. III. Exact solutions for the three cases are
found in Sec. II. In Sec. I the mentioned symmetries are
briefly described and their associated line elements in their
most general form are deduced from the Killing equations.

I. THE SYMMETRIES AND ASSOCIATED METRICS

It is well known* that the most general form of the
spherically symmetric line element is given by

ds* = C(rt)dt* — 2D (rt)dtdr — A (r,t)dr

— B(r,t)df* + sin*0d¢?), (I.1)
with usual interpretation of ¢, r, 6, and ¢ as radial coordi-
nates.

Consider the case of the two-dimensional minimum in-
variant varieties of zero curvature. A space-time is said to be
plane symmetric if it admits the three-parameter group gen-
erated by the transformationg
=y+e,
=z+ b,

ST ]

(I.2)
y=ycos8@—zsinb,

Z=ysinf+4zcos 8.

The infinitesimal generators of the group are

* Partly supported by the National Science Foundation (United States of
America) and Samoupravna Interesna Zajednica Za Nauku (Yugoslavia).
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0 0 O
0 0 O
ol — (L.3)
lEsi=1, o _,
0 1 y
It follows directly from the Killing equation
§680ru + 8uobler T 860 =0, (L.4)

that the most general line element admitting this group is
given by
ds* = C (wx)dw* — 2D (w,x)dw dx
— A (w,x)dx* — B (w,x)(dy* + dz?) . (L.5)
In the same way, if the infinitesimal generators of the group
are given by

0 0 0
0 o0 0

IEi=14 , , (1.6)
1 —z Ye ¥-23)

that is to say, when the minimum invariant varieties of the
three-parameter group are two-dimensional surfaces of neg-
ative curvature, the line element is

ds* = C (w,x)dw* — 2D (w,x)dwdx
— A (w,x)dx* — B (w,x)dy* + e¥dz?) . (L.7)

The expressions (1.1), (1.5), and (1.7) can be summarized in
the line element

ds* = C(w,x)dw® — 2D (w,x)dwdx — A (w,x)dx?
— B(wx){dy* + F{yJdx*}, (L.8)
with F( y) = sin’, 1, and e?, respectively.
Il. FIELD EQUATIONS

The field equations for the fand g metrics are®
RE, —1g, R*=k,T%

uv o
R{W — iR f= ka{“, ,
with (I1.1)
nglvzgaﬁkiﬂﬂv’ Rgzg'uvRiv’
R{lv =faBR ja-/tﬁv ’ Rf:fle Aflv s
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and the tensor 7,,, given by

T,
= 877'kf [(fﬁg)p‘r[ugyv(gapgﬂf —gaﬂgp‘r)
+ Zgay(gﬁpgvr _gﬁvgpr)} + 2( gyagvﬁ _guvgaﬁ)] ’
(IL2)
T,
Mz 4 “ aff T
= =) (=" [(f— &Y vl 8ap8Br — 8ap8,r)
87k, \f.
—2(gyagvﬁ_gpvgaﬁ)] ’ u+U=£,
and they follow from the f-g Lagrangian
N
1 1/2 1 1/2p f Mz u v
= g rRre LR M g —
k—( 8) kf( f) E( g (—f)

4
X(f— &) (f — 8)"(8ao8pr — BapBor) - (I1.3)
We shall search for exact solutions of these equations in
the case that the metric coefficients depend only on one vari-
able (kind of solitonic solution). Choosing this coordinate to
be x, the fand g metrics are given by
ds} =g, dx"dx”
= y(x)dw?® — 28(x)dwdx — a(x)dx*
— B(x){dy* + F(y)dz*},
(IL.4)
ds; = f,, dx*dx"
= C(x)dw* — 2D (x)dwdx
— A (x)dx* — B (x){dy* + F(y)dz*} .
We can simplify the above expressions by appropriate coor-
dinate transformations, though we should keep in mind that
such transformations must be performed simultaneously on
both metrics in order to preserve the invariance of the the-
ory.
If one defines 0 = w + ¢ with dyp/dx = — 6/y wecan
write the fand g metrics as
ds} = ydw* — adx® — x}(dy* + Fd7*),
ds} = Cdw®* — 2Ddwdx — Adx* — B (dy” + FdZ7?).

(ILS)
The nonzero components of the curvature are
C R'C'" C'A’ 2
R =_(c" _____]; A=AC-D?,
©=al" "B 24
D B'C’ C’'4’
Ry=-2ler+ B _C2},
o 24 B 24
BII BIZ B/A:
f__ 2 42 . Z° I1.6)
R B 287 2BA (
__ﬁ_lc,, B’C’ _CIAI}
24 B 24}’
C . B'C’ ‘A
R = RoyF=dr) - {Br+ - B,
with
. . 1 for F=sin’y
F\? F :
eF)=(—) — =— =10 for F=1 (IL.6')
2F 2F

— 1 for F=e”,
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prime and dot meaning x and y differentiation, respectively.
Also we have

R/
[Fall ' ’ ”2 l
L (engBe_cany, €y Bt pany
A B 24 AB 2B 24
2 (C B'C' B'A ]
= = B+ == _Z = Y _¢€lF I1.7
+B{ZA( T T ) ) (.7

The components of the g metric are obtained by the simple
replacements A—a, B—f, C—y, D0 in (IL6).

Evaluation of the components of the tensors T4, and
T/, gives

o= 2 (3 o faa (23
8 =t (o) 5 O
~art, ) b= 5 e (F)))

(e s )

r§ =

T§2=
(IL.8)
M? (9a Ca 2B
ree ({2 )
7 amk, \ 44 NT
2
i =t () o2
4k, \ 44 A
2
T = e G e+ o+ 3]
dirk, \ 44 A A
M? (ay Ay+Ca B
i -2 (Y (25 )
27 4mk \ 44 +h 4 B~
where
o=| - or . Arica(y 28 B( B .
A A B B B
(I1.8")

It can be immediately seen from the relation
RS — 180 R® =k, T}, that D =0 or B = }x*. Following
the previous work2 we shall take the second possibility,
B =2

Further simplification is achieved by noticing that the
relations aT%, + yT%, =0and AT%, + CT/, + 0 hold.
These facts, together with Egs. (I1.1) and (11.6} and the analo-
gous expression for the components of the g metric Ricci
tensor, imply a-y = const and A = const (6 is also constant).
We make the choice a-y = 1 for simplicity. After some ma-
nipulation one gets the equations

e 1 , M? [(l—uj ]
3L Licyxcy= M :
22 T et ) 477(44) 2 T2

2 u
Ler 420 22
34 X 47\ 44

-1
X[309+M_.3_],
3 yal 2
e 1 M2k, (44 )
Sobrsn- ()
x? x2(7’ V) dr k, \ 9
{1+ u) BuJ
X{——=+4—1.
REvals
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The solution of the first equation is

2,
=4 { —ﬁ_i’l—xz}, (IL10)
2 X 9
where A is a constant given by
M2(9) {(l—v) 30}
A= i A II.11
44 A + 4]’ ( )

and u, is an integration constant. Analogously, ¢{x) is found
to be

2
yix) =25 %x’ , (I1.12)
with the constant A given by
2 k v
=Ai__g_(ﬂ) {ﬂ_M] (IL.13)
dr k, \ 9 4 a4

and u, is another intergration constant. From the second
equations in (I1.9) and (I1.10) we get
Ay +Cy~ =34 +3
and, together with (I1.12), we obtain
1
€ —2u,/x — Ax*/3
2 A € —2u,/x —2Ax*/9
x{—+—3~[1'— ads ” (IL15)
3 2 €—2u,/x — Ax*/3
So the relations (I1.10), {I1.12), and (I1.15) represent a com-
plete set of exact solutions of the field equations (II.1).

(I1.14)

A(x)=

I1l. DISCUSSION

It has been proposed? that hadrons can be interpreted as
closed microuniverses generated by the strong f gravity met-
ric. The geodesics associated with the fmetric may provide a
clue to understanding confinement in hadron physics. For
that purpose we shall be concentrating on the possibility of
having confining potentials in the case of our solution (II.10).

To simplify calculations, let us put the f metric in diag-
onal form by performing a coordinate transformation given
by

1/2
dr= (i) (dw - -de) . (IIL.1)
2 C
The f metric turns out to be
S, =diag3C, — A /C, — 3, — xX°F). (I11.2)

In order to consider a possible confinement let us solve a
Klein—Gordon equation in the background f metric. Since
our analysis will be only qualitative, we are considering a
scalar hadron although the realistic Dirac equation can be
exactly solved’ in the f metric (in the case of a spherically
symmetric metric}).

The Klein-Gordon equation
1

s 3, (=), H)+ m*e=0, (L3
turns out to be
iafd’— 5 0,(Cx?0, @) — ——=3,(F'%9,P)
C 34

1
— 5P+ mP=0. IIL4
x*F + 3 " ( )
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U4 50
>

> q
m c<o

FIG. 1. Qualitative behavior of U (g) when €#0and sgn € = — sgn A.

We can separate variables by writing

ier X
o) —e By, (11LS)
and the resulting equations are
é— (Z) —¢ + ivz ,
[Ty v /2
—(F )+ —=(F)"l(+ 1),
7 F
34
R"” R i S
C 2
2 2 '
xleo2mt 2 € W+ DTp o, (iLe)
C? 3C 34 Cx Cx?

By a suitable change of variable ¢ = ¢{x) the last equation in
(IIL.6) can be put in the Schrodinger form

R"(g)+ [0 — Ulg)IR (g) =0 (ITL.7)
with the potential given by
_ 2 2\ C'q) 1+
Ui =22 clo)+ () 8-y
(I11.7")

This Schrodinger-type equation for the radial part can
be studied qualitatively (at least) to look for the existence of
bound states leading to (total or partial) quark confinement.

In the solution (I1.10) we take u, = 0 and A4 = 24 /9.
Since we have different choices for the constants e and A the
following possibilities arise:

(a) €40 and € and A have different signs.

The potential is given by

34 I{l+1)  242m%/3|A
Uig = + 14| 1) 2 2L
2 sin’ ¢ cos’ q
q<(0,7/2) . (ITL.8)
See Fig. 1.
uah
c>0
—»q
c<o

FIG. 2. Qualitative behavior of U (g) when €5£0 and Sgn € = sgn A.
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U@ T

c>0

c<0

FIG. 3. Qualitative behavior of U {g)j when ¢ = 0.

(b) €0, and € and A have the same sign.
The potential is

34 (1{I+1) 2—2m2/|A|]
Ulgl= +— { + , g€(0,0) .
(q) -2 sinhzq COShzq q ( °°)
(II1.9)

See Fig. 2.
(c)e=0.

Ulq) = const + 2m’ i , g€(0,00) . (I11.10)

T34 ¢

See Fig. 3.

As is obvious from this qualitative analysis, the only poten-
tial that increases infinitely and thus can give rise to discrete
eigenvalues of the radial solution is (II1.8) with positive sign
(i.e., e = 1 and A <0). It turns out that this is exactly the
potential obtained in Ref. 3, where the explicit solutions for
the eigenvalues can be found.

So although the exact classical solutions exist in the
wider class of metrics (1.8}, only the metric with positive
curvature can give a confining potential in this simple pic-
ture and the idea of regarding hadrons as closed microuni-
verses of strong gravity is strongly supported. The metrics
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with negative and zero curvature (open and flat universes)
can produce no confining potential. Besides, it follows that
the choice of parameters relevant to the confining potential
(II1.8) automatically gives C> 0 and there can be no radi-
ation in the sense of Hawking.® In Ref. 3 radiation is avoided
by a special choice of parameters that turns out to be the only
possibility.

This analysis lacks the presence of color that is natural-
ly incorporated in the theory of strong interaction (QCD).
However, the study of the f-g theory with color, either in the
simple SU(2} form” or in the more general form incorporat-
ing Weyl symmetry,® showed the change of f metric to be of
order 1/77. This term is irrelevant for long-distance behavior
where confinement occurs, and spin 1 gauge bosons are rel-
evant to distinguish gg from ggq states.
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Godel-type universe with a perfect fluid and a scalar field
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The paper contains, along with a brief review of solutions of general relativistic field equations
when the metric is of a particular cylindrically symmetric stationary form, a new solution of the
same general category when the energy-momentum tensor is due to a perfect fluid plus a scalar
field. It turns out that under these constraints, the space-time is completely homogeneous and
contains closed timelike lines. There is, however, a nonunigueness in the interpretation as one can
introduce a Maxwellian electromagnetic field of arbitrary strength along with the perfect fluid

and the scalar field.
PACS numbers: 04.20.Jb, 04.20.Cv

i. INTRODUCTION

In a recent paper Raychaudhuri and Guha Thakurta'
have shown that the stationary, cylindrically-symmetric line
element

ds? =dt? —dP — d2* — 2m(ridydt — I (ndy*  (L1)

will represent a homogeneous space-time (i.e., admits four
linearly independent Killing vectors) only when m(r)and / (r)
satisfy the following conditions:

D=(+m*"? = 4,e” + Ape ™,

Ldm_ - (1.2)

D dr ’
or
D=Ar,

or
D = const, (L.3)

A, A,, A, C, and C’ being arbitrary constants. Specific
choices of these constants yield the solutions of Gédel,? Ozs-
vath,’> Som and Raychaudhuri,* Reboucas,’ Novello,® and
Gegenberg and Das.” The Gddel solution,

ds’ = dt* —dr’ — dz* + 2v2 sinh®r dy dt
+ (sinh*r — sinh?7)dy?, (1.4)

represents the only homogeneous space-time with a perfect
fluid content® (all other perfect fluid solutions, e.g., the
Hoenselaers and Vishveshwara solution,®'° are reducible to
the Godel solution), the fluid obeying the equation of state:
density = pressure (uniformy}. In the original version of his
solution Godel solved Einstein’s field equations retaining the
cosmological A term, and thereby arrived at a uniform dust
distribution (vanishing pressure).

In the paper by Raychaudhuri and Guha Thakurta it
has been shown that if the condition C = v2 a (which, inci-
dentally, must be satisfied by all perfect fluid solutions) is
relaxed, homogeneous space-times of the form (I.1) allows
the introduction of an electromagnetic field along with uni-
form perfect fluid distribution, but the equation of state of
the fluid is now changed to an inequality: density > pressure.
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The electromagnetic field may have a uniform distribution
of sources or may satisfy source-free Maxwell’s equations.

Ozsvath, retaining the cosmological A term in Ein-
stein’s field equations, and considering a material velocity
vector (a Killing vector) different from the velocity vector in
a co-moving system, has interpreted the homogeneous
space-time of the form (1.1} as due to a uniform dust distribu-
tion along with an electromagnetic field satisfying source-
free Maxwell’s equations.

The Som and Raychaudhuri metric

ds* =dt? —dr* — d2* — (P — *r)dy? + 2ardydt (L.5)

is a homogeneous space-time of the form (I.1) with m and /
satisfying (I.3). Here the universe contains a uniform distri-
bution of charged dust with charge density = twice dust
density (in general relativistic unit) and an associated electro-
magnetic field.

The Reboucas metric

ds* =dt? — dr* — dz?
+ ﬂcosh ardy dt
a

.Q 2 + a2
+ m coshzar + 1 d¢2, (16)

with @> = 2(2? — a?),
represents for a %0, a nonvanishing electromagnetic field
along with a perfect fluid distribution. With a = 0 the elec-
tromagnetic field vanishes and the solution is transformable
to the Godel solution.

Novello considered solutions of Einstein’s field equa-
tions with a cosmological A term and an energy-momentum
tensor corresponding to a vortex dominated non-Stokesian
fluid which is characterized by a linear relationship between
the anisotropic pressure (/1) and the vortex tensor {2 }[=¢'
o, — (0*/3)8}, o being the vorticity vector of the fluid]. He
arrived at the homogeneous space-time of the form (I.1) with

mir) = cos ar,

2
(v —2)'7
lir)= —( v 42 )coszar+ 1,

=2
where a is a constant and the constant y relates I7} and £2 ;:
IT; = — y°02 . A perfect fluid coupled with an electromag-
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netic field was shown by him to be a realization of such a
vortex-dominated non-Stokesian fluid.

More recently Gegenberg and Das have found a class of
exact solutions to the combined Einstein~-Maxwell-Klein—
Gordon field equations, thereby demonstrating the possibil-
ity of still another interpretation of sources of homogeneous
space-time of the form (I.1}. Their solutions,

ds’ = — (dr + dZ* + rdy?)
+ [a(rdy +dt 1%,

witha(r) = 4+ (87)'/2m#?, represents a universe consisting of
a complex, charged, massive, Klein—-Gordon field ¢ = expl[i-
(Ly + Et)], with mass m, along with an associated constant
magnetic field B = + 2'/?mz + B, along the symmetry axis
(By, L, E are arbitrary parameters). The authors assumed
validity of a sort of Weyl-Majumdar-Papapetrau condition.
The magnetic field vanishes and the metric becomes static if
the K.G. field is taken to be massless.

In view of all these facts it seemed worthwhile to inves-
tigate the possibility of existence of space-times of the form
(I.1) with a combination of a perfect fluid and a real, un-
charged K.G. field as its source. As shown in this paper such
a possibility exists only if the K.G. field is massless (unlike
the case of charged fields considered by Gegenberg and Das).
It further turns out that the resulting space-time is homogen-
eous with the possibility of incorporating an electromagnetic
field with or without a homogeneous distribution of sources
in addition to the perfect fluid and K.G. field.

Il. THE FIELD EQUATIONS FOR THE FLUID CUM
SCALAR FIELD

With the usual Lagrangian for the massive scalar field
as

L= —14[g,.6"—M7]
the Einstein equations are
G.s =R.3 — i8.4R
=87[(p+plavs — Peup
4. .8 — MG %8s
—ib.%5] (IL.1)

Ifv* is an eigenvector of G,,, (we shall show in the last section
that if * is not an eigenvector of G,,, then no solution of the
desired type exists), then we have either

v, =0
or (IL2)

$,.=av,.
With¢ , = av,,v, is hypersurface orthogonal and hence by
a coordinate transformation the line element (I.1) can be re-
duced to static form (with m = 0). Now for the line element
(I.1), 4 “=64 is an eigenvector of G ,, . If we demand that the
fluid velocity vector coincides with 4 #, i.e., the coordinate
system is co-moving, we get

0=0

Written out explicitly for the metric (I.1), with x' =7,
x? = z, x*> = ¢. The equations (II.1) now give

(IL.3)
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0= 87[ P%’”+%M2¢2 - ¢‘2¢'2]D, (I1.4)
2
m, p—p 1 242 1]
D,——=8r|—r4+—M — | D, I1.5
nT5p 77'[ > + 5 (7 ¢4 (IL5)
1 ( mm, ) [P +3p 2 2]
- B 8 M D, 11.6
2 D /) 2 + ¢ (IL6)
1 ({ mly—im, )
ey =8r[ —m(p+p)—¢:4°]1D, (IL7)
1
i(ﬂ) -0, (IL8)
2\ D/
1 l,+mml) [p—p 1 2,2 3]
— (At g 2 M%7 4,47 |D,
2 ( p ) Th| T M e
(IL.9)
and the equation for the scalar field is
(¢ = — M2 (IL.10)

Again the vanishing of G,,, G5, and G,, implies that only
oneof @ |, ¢ ,, and ¢ ; is nonzero.

Incased; #0,¢, = ¢, =0, Eq. (I1.10) gives D = con-
stant, which in turn implies ¢ = constant from (I1.4), (I1.5),
and (I1.9) and hence the scalar field vanishes.

If again ¢ | #0, ¢, = ¢ ; = 0 Eqs. (IL.4) and (I1.5) give

2

D, -2 _ 8742 D. (IL11)
2D :
But from (IL4), (IL6), and (IL9)
D, = 877[ @+%M?¢2]D, (IL12)
and from (I1.6) and (I1.8)
my p+3p 1
R o o RV 2]1). IL13
2D ”[ 2 M (IL13)

From (I1.11)HI1.13), ¢ ; vanishes.

Lastly let us consider ¢, #0and ¢ | = ¢ ; = 0. Since
the metric (I.1) obviously admits the Killing vector & #==5§4%
the vanishing of the Lie derivative of T#* with respect to § “
yields

$,, =0 or (IL.14)

where « is an arbitrary constant and a trivial constant of
integration is omitted. Equation (I1.10) now gives M = 0. In
this case, (I1.4), (I1.6), and (I1.7) imply p and p are constants
and

¢ = az,

%: m2p +ad) =c, (IL.15)
where c is a constant. From (I1.6) and (I1.9)

Dl] 2

= 167p = a?, II.16

D mp (IL.16)

where a is a constant. The general solution of (I1.16} is
D=Ae" +Ae 7, (I1.17)

A, and A, being arbitrary constants. In the case p = 0, we
have

D=a'r (I1.18)
or
D=a", (IL.19)
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where ¢’ and @” are arbitrary constants. Using (I1.15) and
{I1.17)

m = (c/a)(d,e” — e~ + B), (I1.20)

where B is an arbitrary constant. The pressure p and the
density p are given by

@ a® c 3a*
— , = 420 = — 11.21
P=T6r’ P~ o & 16 -2
the constants a, ¢, and a being related by
c2/2 — a® = 8ma’. (I1.22)

The solutions for m corresponding to (II.18) and (I1.19) are,
respectively,

m =%,z + B, (I1.23)

and

m=ca"r+B", (I1.24)

where B' and B " are constants. With density p given by
p =2a*=c*/87. (11.25)

lil. ALTERNATIVE INTERPRETATION FOR THE METRIC

It would be noted that Eqs. (I1.15) and (I1.17) are identi-
cal with the condition deduced by Raychaudhuri and Guha
Thakurta for homogenity so that the solutions we are seek-
ing are all homogeneous. Further (I1.21) requires ¢* > 2a?,
which is again the condition that these authors found for
satisfying the Einstein equations with a distribution of per-
fect fluid and electromagnetic field (the electromagnetic field
satisfying the Maxwell equations with or without source). It
thus appears that these metrics admit an alternative inter-
pretation—and one is tempted to ask whether one can com-
bine all three to give a different interpretation. It is shown
below that this is indeed possible. The field equations will
now be

2
w—%=%P;P-ﬂ} (IIL1)
0= 877[ P=P 2y a2], (IIL.2)
2
%: 8#[ p +23P + 8], (IIL3)
2 —
- = 817-[ PP ir ] (I1L4)
0=1, (IIL5)

where 75 represents the electromagnetic stress-energy ten-
sor. Equations (I11.1)~IIL.5) along with the Rainich condi-
tions yield

a? | P 2
LR S S Y 1IL6
P=Ter P~ Ter ( )+ (I1L.6)
A=—d=ro -
=1 [a2 _ey 877'(12] (IIL7)
167 2 ’ '
2
oo [az Sy 87ra2] (ITL8)
87
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The reality condition for the electromagnetic field (73 > 0)
constrains p and p as
p>p+ 2% (IT1.9)

A non-unique interpretation of the sources of the electro-
magnetic field is possible. One choice is

F13 —_ F31 =+ _213 (02 _ 2a2 _ 16702)1/2,

FOl= _F'0— mp¥, (IIL10)

o(=charge density) = 81_ (¢? — 2a% — 16ma?)'?,
T

which corresponds to a homogeneous distribution of
sources. Another choice is

1

FP= —F¥ = 4+ (c*—2a* — 16ma?)" %cos 6,
2D

F¥®= —F%= 4 }(*—2d* — 16ma®)'sin 6,
(IIL11)

Fo= —F= 4+ (* 242 _ 16ma?)"*cos 6,
2D
which satisfy source-free Maxwell equations for = — cz.

IV. EXISTENCE OF CLOSED TIMELIKE LINES

The coordinate # in (I.1) can be treated as an angular
coordinate if g;;—0 and g;,/g,,—7* as r—0. One can then
use the transformations X = r cos ¢, Y = r sin ¢ and obtain
analyticity of the metric at 7 = 0."" The choice of constants
for which i can be treated as an angular coordinate is seen to
be

A +A4,=0and B=A,—A4,. (IV.1)

With this choice of constants, the ¢, z, r constant lines are
closed timelike lines for

r>£coth‘lz A4,>0)
a
or (IV.2)
r<£coth“'£ (4, <0).
a a

V. ABSENCE OF STATIONARY SOLUTIONS WHEN THE
FLOW VECTOR IS NOT AN EIGENVECTOROF G,

Since 4 #=8j is an eigenvector of G, (with eigenvalue
A4, say), contraction of G,,, with 4 * yields

(p+plov, —dod, =0, (v.1)
(P +plvgv; —dod, =0, (v.2)
Br[(p+plo —P— 4 —d%] =4, (V.3)
8|1+ plos + mp — 26,8
— ¢,0¢’3] = — mA. (V.4)
Equations (V.1}-(V.4) give
Uy Uy mu, + U, b0
— == = = V.5
&, ¢, mo,+¢; (p+ Py s -3
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where @ may not be constant. For @ 0, (V.5) can be rewrit-
ten as

nL=04¢,, v,= ¢,0/@(P +p)s

(V.6)
1
v, =0¢,, v;=0 mey|@ — ——— ]

2 ® 3 $;5 + ¢,o[ TEVE
For®*=1/(p+p),v, = O , and then the R and R }
equations imply m = constant, and so by a transformation
of the ¢ coordinate (I.1) can be reduced to static form. The
other case of interest with ® #0is

v =0,=0=¢,=¢,,

(V.7)
b0 1
Vo=—2 0, =0, +mpy|O@ — ——— |,
@p+p ’ ° O(p+p)
and the corresponding field equations are
p=p, (V.8)
b, - _g (V.9)
11 2D — Yy .
(l_m) = 87D (p'v’v, — 6,6, (V.10)
2D/, ’
mm, r0 0
— :8 D — )y V.ll
[z ) D (Pt — b ) (v.11)
m ,
(2_DL)1 = 87D (p'vgw’ — ¢,87), (V.12)
ml, —Im ,
( = 1)1 — 87D (p'vy — 6,6 ) (V.13)

and g =0 = m2¢,o,o +2méy, —D 2‘15,0,0 +d,,, (V.14)
wherep' =p+p=2p.

The normality condition for the flow vector yields the fur-
ther equation

2 2
Z;Z—%—z( bo+d:)7=1 (V.15)
From (V.6) and (V.12)
(ﬂ) =0 or D=k, (V.16)
D /, D
where k is a constant. From (V.9) and (V.16)
D=d, "+ de*", (V.17)

so that
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m =2(4,e*" — A,e = *" + const),
where 2k 2 =k 2.

Again a rather involved manipulation using (V.9), (V.10),
(V.11), and (V.15) yields

(V.18)

k'* /87 +d% =p, (V.19)
b=07" (V.20)

and

Pl +mdy) =0. (V.21)
(V.21} implies either

p=0 (V.22)
or

mé, +¢,=0. (V.23)

Condition (V.22) implies, in view of (V.19) and (V.20),

m = const, and so that metric is transformable to the static
form. Condition (V.23) implies, since ¢ = ¢ (¢/,¢ ), m = const,
with obvious conclusion. For the particular case ® = 0, Egs.
(V.5),(V.14}, and (V.10) imply ¢, = ¢ ; = 0, so that the sca-
lar field vanishes.
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Existence of solutions of integral equations in the thermodynamics of one-
dimensional fermions with repulsive delta function potential
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We prove by an iteration scheme that the solutions of coupled integral equations in the
thermodynamics of the fermions in one dimension with delta function potential exist.

PACS numbers: 05.30.Fk

. INTRODUCTION

Since the early 1950s, people have searched for one di-
mensional models of many body systems that are mathemat-
ically attractable. In 1950, Tomonaga first proposed a model
for the electron gas that can be solved exactly.! The model
treats the elementary excitations as bosons and further as-
sumes that the momentum transfer equals the energy trans-
fer. Obviously the last condition is an approximation though
it is argued that the condition would be satisfied near the
fermi surface. A more realistic model with conventional qua-
dratic kinetic energy is the delta function model of the
Hamiltonian

> + 2¢ Y 6lx; —x;), ¢>0. (1)

82
X i>]

H z 3
The ground state energy of (1) for the bosons was first ob-
tained by Lieb and Liniger” in 1965, assuming that the wave
function is a finite sum of plane waves with coefficients to be
determined from some transcendental equations. That is,
the wave function is assumed of the form

Y= 2 Qp eXP (ipp Xy + ipp Xy + »+ + ipp Xy) (2)
if
X <Xy < <Xy (3)

where P,, P,,...P, is a permutation of 1,2,...,N. The coeffi-
cients ap are to be determined by matching the wave func-
tion {2) with the wave functions in other regions than {3) and
a set of transcendental equations thus result. This assump-
tion is known as Bethe’s hypothesis. It was originated by
Bethe? in the early forties when he studied the Hamiltonian
of the ferromagnets

]
H= — > z (0.0, + 0,0, +0,0,), 4)

where the os are the spin operators. Yet it is surprising that
the hypothesis was successfully applied later to a number of
quantum models in one dimension and classical models in
two dimensions. These include the anisotropic ferromagnet-
ic model, the quantum lattice gas model, the ice model, the
ferroelectric model, and the delta function model mentioned
earlier.

Now the fermion case of the delta function model (1)
imposed a greater difficulty than the boson case because of
the fermi statistic symmetries required for its wave func-
tions. McGuire® and Flick and Lieb® first solved the one spin
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down and two spin down cases. Later Gaudin® and Yang’
obtained the solution for the # spin down problem and more
generally Yang classified all the solutions of any statistics
using group theoretical approach. At about the same time,
some other problems of the delta function model have also
been solved. These include the S matrix for any finite num-
ber of particles,® the ground state energy of the fermion-
boson mixture,’ and the thermodynamics and excitation
spectrum at finite temperature for the bosons.'?

The thermodynamics in the fermion case again imposed
further complication than the boson case. For now it is more
difficult to determine all the excited states of the system. To
achieve this, one has to locate all the solutions of the tran-
scendental equations in Bethe’s hypothesis. This was finally
solved by the present author in a previous paper'' showing
that the roots of the transcendental equations were lying in
strings in the complex plane. More specifically, the transcen-
dental equations in Bethe’s hypothesis for the case of N spin
down are given by

ezpzzn(m> (5)
w\ —p+A+ic/)

( —p’+A—ic/2)__ ( —A'+A—ic)
I,;I —p+A+ic/2) !:I A 4A+ic)’

where the p’s are the local momenta and the A ’s (M in num-
ber) are some auxiliary variables. In the ground state, the p’s

and A ’s are real numbers. In the excited states, the A ’s are
complex numbers in the form of strings:

A=E+iun+ 0" ), p=—(m-1,

where 7 = ¢/2, k>0 is a certain number, and £ is real. The
integer m defines the length of the string that contains m
complex numbers. Thus the two numbers £ and m define a
string uniquely. Let C (£,n) denote such a string. By the use of
{6), (5) become equations for the p’s and £ *s and in the limit L,
N, M— « proportionally, they yield the following integral
equations for the density functions of p’s and C (£,m):

1 1 (=
ST =P +p —;J Gip—klpdk

1 a0
+?f Golp — ko, dk,
(7)

1 (=
Un+ar|,h:'2_J- GO(p_k)(0n+l,h +an—l,h)dk? n>1
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where 0y, =p and
Gky= [ €™ 4 8)
2r J-» cosh o
Theo,,, 0,,, are defined by
No,,d¢ = the number of £ ’s for strings c(&,m) in [£,£ + d£],
No,, ,d¢ = the number of “holes” for the above £’s in

.5 +ag], (9a)

and the p and p,, are the density functions for the p’s and its
holes, respectively,

p dk = the number of p’s in the interval [k,k + dk ],

prdk = the number of holes for the above p’s in
[kk +dk]. (9b)

If one defines

pn/p =exp(e(pV/T), 0,4/0, =exp(p,(k)/T) (10)
and minimizes the free energy (E — T'S)/L [subject to fixed
N /L and (N — 2M )/L ] to obtain the equilibrium distribu-
tions of p’s and o,!s, one arrives at the following equations
for (k) and @,, (k ):

A=p>—¢— —;:J Gip—k)In{l+e-“"\dk

— %f Gyp—k)ln{l +e*'"\dk, {l1a)

_ _7: * _ @ /T
=2 Glp—kilma+er)
—In(l+e 7)) dk, (11b)

@, = %f Golp — k)ln (1 + &)

+In(l+¢* N]dk, v>2, (11¢)

limp, =vAT. (11d)
The free energy F and the pressure P are then given by

E_ 4N lf In (1 +e=“7)dk
L L 2r J_ o

—a (=2, (12)

L

P=(T/27r)J In (1 +e~“7T)dk, (13)

where 4 is the chemical potential. Here A can be seen as the
magnetic field. [The Hamiltonian (1) for a fermion system
will have an additional term A (N — 2M ), with N — 2M being
the total spin of the system.] Thus the solutions of (11a}-
(11d) determine all the thermodynamic quantities.

It can easily be shown that in the limit c—0 (free fer-
mions) and c— o (free fermions of only one species), (11a)~
(11d) give the correct temperature distribution functions. It
also yields the correct second virial coefficients for any value
of ¢. But unlike the boson system the general existence of
solutions in (11a)—(11d) has not been established. In the bo-
son case, a single integral equation of similar nature was
shown by Yang and Yang'® to have solutions by iteration.
The present author has long suspected that an iteration pro-
cedure can also be applied to (11a)~(11d) though it may not
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be obvious at first sight. In this paper, I prove that (11a)-
(11d) can indeed be solved by iterations when the chemical
potential 4 is negative and the magnetic field A = 0. This not
only establishes the existence of solutions for the case men-
tioned but also guarantees the convergence of the iteration
method in numerical computation.

In the following, the existence theorems will be de-
scribed in detail. The method of proof'is quite extraordinary
as it involves repeated use of inductions and seems to be the
first time that it is applied to the coupled integral equations
of type (11a)-(11d).

II. EXISTENCE THEOREMS

We use an iteration scheme to prove the existence of
solutions for equations (11a)—-(11d). The iteration is defined
in operator forms as follows (7 is scaled to be 1):

€0 = — A4 p’,
PP =0, v>1,
€= —A+p — —G2'~ln(1+e"f"")

- —%ln [1+exp (@],

{0

pl'= %ln(wemfpz
— —Gio—ln [1+exp(—€],

(0)

V= o1+ exp ol
+1GoIn(1 +exp @, ), v>2 (14)

and so on for €, @2, etc. Here we use G, and G, as the
integral operators with kernals Go(p — k), G,(p — k) de-
fined in {11a}j—(11d). We also assume that the chemical poten-
tial A is negative and the magnetic field A is zero in (11a)-
(11d)

A<0, A=0.

That is, we are looking for solutions with boundary condi-
tions

lim @, /v = 0.

Then for the iteration (14), the following theorems hold:
Theorem 1: In the iteration (14}, € forms a decreasing
sequence

€05 €Ny @5 s gty (15)
and @, (n) forms an increasing sequence:

pV<p V< V< <p i< (16)
{the sign < in (16) holds strictly for n>v).

Theorem 2: € ™ is bounded below and ¢ ! is bounded

above.
Theorem 3:

lim € p) = € p)
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and

lim ¢ p) =g, (p) (17)

exist and satisfy Eqs. (11a)-(11d).
Theorem 3 is a straightforward consequence of Theo-
rems 1 and 2. Their proofs are given in Secs. III and IV.

Il. PROOF OF THEOREM 1

The proof is based on several lemmas.
Lemma I: The kernels Gy p — k) and G,(p — k) are

positive functions
Gop—k)>0, G(p—k)>0 - (18)

and

Gor= " Gip~kfdk=f,

Gir=[" Glp—kifak=s

if fis a constant function.
Proof: From (8), the kernel G, has the following closed
form:

® — iwk 1
Gk)= —— ¢ do=— ' 0
2r J_ . coshnow 2ncosh{mK /27)
(20)

Also, the Fourier transform of G, is given by

- e~ Ml -

Glw) = = Golw)e ~ L. (21)

coshnyw

Thus by convolution,

Gk = | Gk — k)

Now

Jw Golp — k) dk = Gof0) = 1,
23)

F G/ p—k)dk=G,(0)=1.

Thus (19) is true if fis a constant function. The positiveness
of G, and G, in (18} is very crucial and will be used in the
proofs of all the remaining lemmas and theorems.

Lemma 2: The inequality

(L+ )1 +e5)>(1 +e¥)/(1 + e¥) (24)
holds if
X>Y,
(25)

X' —X)>(Y —Y)>0.

The proof is straightforward if one takes the logarithm
of (24) and notes that the derivative of In(1 + e¢*} is an in-
creasing function.

Lemma 3: Suppose x and x’ are constants and w,0’,@,¢’
are functions satisfying the inequalities

WLXLP, (26)
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o -0 —x<p' —@. (27)
Then the following inequality:
G, In[(1 + exp @')/(1 + exp wj}}

<Gy In [(1 + exp @')/(1 + exp p)] (28)

holds for the integral operators G, and G, defined in (8).
Proof: By Lemma | and Lemma 2, one has

Glln[1+expw ]<G,ln 1+expx ]
1+ expow 1+expx
=Go1n[_1_+ﬂi]
1 +expx
<G01n[_lﬁ§l£ ) (29)
l+expo

This completes the proof. Note that in (29), the detailed com-
parison of the kernels G, and G, is not required once the
inequalities of type (26) and (27) are established. This lemma
will be used later when we deal with the iterations € " in (14),
where both G, and G, are present.

Lemma 4: For fixed n > 0 the following holds:

@ <P PI< <@ < (30)
furthermore the sign < holds strictly for v<n. The proof by

induction is straightforward.
Lemma 5: For a fixed m, assume that

EVs €5 s e (31
P U< <<, Va1, 32)
Define

fU=(1+exp@t)/(1 +expel "), v>l,

[P =[1+exp(—€""M/[1+exp(—€].  (33)
Then

£ >f 4
holds for n<m + 1.

Proof by induction: Suppose (34) holds for n<j<m. Then
take

eV =l =Gy In(f, fUTY), (35)
UV =@M =(Gy2)In(f £V (36)
By the induction hypothesis, one has
UL =@, 3p ) — U
and by Lemma 1 and Lemma 2, (34) holds for n = + 1. Itis
easy to show that (34) holds for n = 1. This completes the

induction. [(31) is required for the case v = 1.]
Lemma 6: For a fixed m, assume that

p<p<<@l", v>L (37)
Define the following integral equations:
Y1 =(Go/2)In (1 + exp p,),
Y2 =1(Go/2)In (1 + exp y;)(1 + exp y,),
&
Y, =(Go/2)In(1 +expy, )
X1 +expy,_,), v>22, {38)

and so forth. Let us also define the iterations for the above
equations by
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PO =yl = =)0 =0, V31, (39)
W=(Gy/2)In (1 +expy®) =4In2,
PW=(Gy/2)In (1 + expy? |
X(1+expyy )= In2, v>2, (40
(2} 1,3)

and so forth, for y\\)\)),... . Thus except for y,, y, satisfies the
same integral equatlons as @, in (11c) and the iterations y"
are sequences of constant numbers. Then the following
inequalities:

PP, s (41)
PV -l IO - eV el (42)
hold for n<m.

Proof by induction: Comparing (39) with (14), it is easy
to establish that (41) and (42) hold for n = 0,1. Suppose they
hold for n<m — 1. Then by Lemmas 1 and 2,

[ 1+expeV, ]
[+expgls))
+ iln[ 1 +exr><p‘v"'_l ]
1+exppl=)!

G
n = =01p
— @y )

(n41) __

Py

2
<(the same form as above with the ¢s
replaced by the y’s)

(n+ 1) (n)

=V
<ﬂln[ I+oVh, ]

2 ll+expplyy

1 )
+ Gopn [ Lrewel ]
2 1+exppl ™"
=l =l (43)
Similarly, one can show that (41) holds for n<m. This com-
pletes the proof.
Lemma 7: Suppose (31) and (32) are true so that up to

n =m, — €"and @ " are increasing sequences. Define con-
stants x * such that

x(())=0
x®=4In(l +expx"~")
+4In(l +expy” "), n>l, (44)

where y " are the sequences of constants defined in (40).
Then

— 4 gyl xin = g ol ), 45)
_é.(nAl)<x(nvl)<¢13n—l) (46)

hold for n<m.

Proof by induction: Suppose (45) and (46) hold for
n<m — 1. Then by Lemma 3 and Lemma 6 and Eq. (34), one
has

_én+ll+€(n] — %l_ln [(1 +cxp(_e(n)))/
X (1 +exp(—e" )]

+ Gzo In [(1 + exp @)/l +exp@ "]

<ﬁ—ln[

1 + exp x™” ]
2

1 +expx”—V
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1+ exp pi”
+ iln [-————-—+ PY ]
2 1 +expyl "
— (x(n +1) _ x(nb)
G
< -2—°1nf(¢ &)

Go

+ —2In ()
2 Sl

< GT Infig )

G,
+ = inflpl)
o1 (#7)
Similarly one can show that (46) holds for n<m. This com-
pletes the induction.
Now we can prove Theorem 1 by induction. It is easy to

show that the inequalities (15) and (16) hold for n = 0,1. Sup-
pose it holds for n<m; then it is obvious from (14) that

€™ cem+ (48)
plri<e" T, w2, (49)
as G, and G, are positive. Thus it remains to show that
pi<pimt forv=1.
Now by Lemma 3 and Lemma 7,
_ fm =1
_642m1+€(1m—1)=£1_1n1+eXP( ¢ )
2 1+4exp(—em"?)
- Gogy(Lromer )
2 1+ exppl™—?
<Lompipr)
2
+ Lwmfig )
—w' ol (50)
Similarly one can show that
_emmlgpyn . (51)
Then
ot —pi= S 5- [In (1 +exp g )/

><(1 +expgl )]
- —C;— [In (1 + exp { — )/

(1 + exp (— €™~ )] > 0. (52)
This completes the proof of the theorem.

IV. PROOF OF THEOREMS 2 AND 3

Proof of Theorem 2: First we will prove that ¢! are
bounded above. Let us define

2
for the nth iteration. Consider the equations

5™ — max @ {53)

x;,=4In(l + exp x5},

x,=jIn(l+expx, )l +expx, ) v>2, (54)
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whose solutions x,, satisfy

x, =In[v(v +2)]. (55)
Now it is obvious that

e%<x,. {56)
Suppose

pM<x, for n<m. (57)
Then

- (m)

e < [(1+exppl™ )
X(1+exp@iy)]
<{In[(I+expx, )
X(1+expx, )]
=x,. (58)
Thus by induction, for all values of n
@ <x, = const. (59)
and @ "' is bounded above. To prove €' is bounded below,
one notes that from (14),

€"> —A+p*—1G,In(1 +exp(— "~ ) — C, (60)
where
C=In(l 4+ exp x,). (61)
Consider the equation
flp)= —A4+p —4G In[l +exp(—f)]-C
=F(f). (62)

It has been shown that (62) can be solved by iteration and the
solution satisfies'®

fOIKf(p)l< —A+p*—C. (63)

Thus f( p) < €. Since F is an increasing functional of £, (60)
and (62) imply

"> F(e”)> F(f)=f(p)

€?> F(e")>F(f)=f(p) (64)
and so on. Therefore
€™ > f(p)>f(0) (65)

and € " is bounded below. This completes the proof of Theo-
rem 2.
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Proof of Theorem 3: By Theorems 1 and 2, the limits

lim €"(p) = ¢(p), limo 7 (p)=0,.(p) (66)
exist. It can easily be seen that the sequences approach the
limit uniformly and that €( p), @, ( p) satisfy (11a)-(11d). The
boundary condition is also satisfied by (66). This completes
the proof.

V.CONCLUSION

I have shown in a previous paper that the thermody-
namics of the fermions of the delta-function model is deter-
mined by the integral equations (11a)—(11d). In this paper, I
show that the solutions of (11a}~(11d) exist in the case of
negative potential and zero magnetic field. The proof is
based on the fact that the iterations €and @ ) of (14) are
monotonic bounded sequences and thus approach the solu-
tions of (11a)-(11d). For positive chemical potential and non-
zero magnetic field, one can take the initial iteration
@' = 2vA but the sequences €™ and @' are no longer
monotonic. It is believed that they will still converge to the
solutions of (11a)—(11d) though it cannot be proved by the
procedure here.
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The equation of state and the barometric formula for a free boson gas in a weak external

potential are derived for very general potentials.

PACS numbers: 05.30.Jp

1. INTRODUCTION

Van den Berg' derives heuristically the equation of state
and the barometric formula for a one-dimensional free boson
gas in a weak external field of power form. These results are
made rigorous by Lewis and Ven den Berg.? The aim of this
paper is to give simple proofs of these results for a very wide
class of potentials.

We distinguish between Bose—Einstein condensation,
in which the total condensate is in the ground state so that
the ground state is macroscopically occupied, and general-
ized Bose-Einstein condensation in which the condensate
occupies the low-lying energy levels without any of these
levels being necessarily macroscopically occupied. A de-
tailed study of generalized Bose—Einstein condensation is
now in preparation.’ It is clear from the paper of Landau and
Wilde* that the equation of state does not distinguish be-
tween the two types of condensation but depends only on the
distribution of eigenvalues of the single particle Hamiltonian
in the large volume limit. In Sec. 2 we obtain this limit distri-
bution by Dirichlet-Neumann bracketing. The techniques
used by Davies® can be adapted to give the same results but
we think that the method used here is much more direct.

In Sec. 3 we consider the scaled distribution of the bo-
son gas in the thermodynamic limit. We obtain the baromet-
ric distribution of the normal fluid and show that on the
same scale the condensate is concentrated on the set of abso-
lute minima of the potential.

To avoid unnecessary repetition we use the notation of
Ref. 6. We are grateful to Professor J. T. Lewis and Dr. M.
Van den Berg for many discussions on this problem and to
Professors A. Verbeure and J. Messer for making available
their manuscript on the treatment of this problem by corre-
lation inequalities.

2. THEEQUATIONOF STATE IN THE THERMODYNAMIC
LIMIT

Let A ! be a bounded open region of R” of unit volume
whose boundary dA ! is piecewise continuously
differentiable.

For each L >0 let A © be the region A © = {xeR":

L ~'xeA '}. Take H, tobe the self-adjoint operator on %",
= L %A *)determinedby — 4 + ¥ (x/L )andtheDirichlet
boundary condition. We assume that ¥is a nonnegative con-

*Postal address.
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tinuous function definedon A '.Let Ef<ES<E5<--be
the eigenvalues of H, and {¢ % : n = 1,2,3,...} the corre-
sponding eigenvectors.

Our objective in this section is to find the pressure in the
thermodynamic limit

. 1 = _BE!

ps=1lim ——— % In[1 —z(L)e #"], (2.1)
# 1-» BL* kzl

where the fugacity z(L ) is determined by the constant density

constraint

- 1 & L
p=L ¥ Al 22)
LY =1 P55 — (L)
Equivalently, if we put 7z = E ; — E | we require
pp = lim — B% ki In[1 = £(L)je 7], (2.3)
e o,
where £ (L )€[0,1) is the unique solution of
- 1 & L
p=— 2 __EL}_ (2.4)

LY &gy
If we define the distribution function £* on [0, ) by

Ft(np) = max(k : 9i<7n},

v
Y

wherec, = 7,/7°2""?, 7, being the volume of the unit ball in
R, then

L s i =, f FimF, (dn). (2.5)

LY

If in addition fis continuously differentiable on (€, ) and

lim f(n)F*(n) =0, then
7> 0

= 3 Smh=~ .| Sl — Pl dn
(2.6)

From the work of Landau and Wilde* and (2.6} it follows
that to find the equation of state it is sufficient to find
lim, __ F, (7). This is done in the following lemma.

Lemma I:If EX—0as L the I!im Ft(y)=F(n),

where F(0) = Sy pcq (71— V()12 dx.

Proof: Let G (E) = max{k: E;<E }and [B :
nel _} be the set of cubes in R” of the form [L ~'/a,,
L~"¥a, + 1))X..X[L ~"?a,, L ~"*a, + 1)), witha,, ...,

a,eZ, which intersect A ' and let { B[ : nel , | be the set of
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those cubes that are contained in A !. Also let

AL =LBEL, Vi= sup Vix/L)= Sup Vx)
and
inf V(x/L) if ALCAE,
V5 =t
0 if ALgAL,
( _
inf V(x) if BLcA',
= {xeB
0 if BLZA'

Denote by , V' * (respectively _ ¥ *) the piecewise constant
function onu,, 4 [ (respectively u,, 4 5)with value , ¥}
(respectively _¥%)in 4% and by _ A (respectively _4 ) the
Laplacian with the Dirichlet (respectively, Neumann)
boundary condition on the boundary of each 4 £ nel . (re-
spectively 7_). Let . G*(E) [respectively _G*(E)] be the
distribution of the eigenvalues of — (.4 )+ , V' *[respec-
tively, — 4(_4 )+ _¥*] Then by Dirichlet-Neumann
bracketing (Ref. 7, Theorem XIII. Eq. 15)

_GE)>G"E)> ,G"E) (2.7)
Now
+GHE)= 3 7, [(E—,VIL]) (2.8)

where 7, is the distribution of the eigenvalues of the Lapla-
cian on the unit cube with the Dirichlet boundary condition.
By Ref. 7, for 77, there is a constant ¢, such that

77+(E)>CVEV/2 - C+(1 - E(v— 1)/2/2(v— 1)/2)'
Therefore
+GL(E)>CVL v/2 z (E— +Vfl.)v/2
nel
+VI<E
(E - VL)(V— 1)/2
_ (v— 1172 n
€+ Z (1 +L olv—1/2
nel
VEiCE
(2.9)
Similarly
GHE)e,L™? S (E— _VE7”
nel _
VE<E
(E - VL)(V7 1)/2
(v—1/2 "
tec- Z (1 +L 21v—l)/2
nel
VIKE

(2.10)

From (2.9) we see that
lim mf——G (17+E{')>cvf [ — Vi(x)]**dx,
L— L 7> Vix)

and from (2.10)

lim sup—=G*(n+ EHj<e, | [n—Vix]"dx.
7> Vix)

L—w
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Since FX(n) = (1/¢,L *)G*( + E 7) the lemma follows: W

Let H® be the Dirichlet Laplacian on A . It is know
that if G £ is the distribution of eigenvalues of H,
lim, . G}(A)/A** =c, and therefore G §(1 )/A " is
bounded by say c. Now H9 <H, and so

GL("’) < Gé(n)_ G(l)(L 277) v/2 ¢ v/2
Lv LY - (LG)v/z < :

Thus

Fo()<=(n +EL". (2.11)

v

Therefore if /' is continuous and bounded on (€, «0) and
f'(m)m*’? is integrable at infinity, by the Lebesgue dominated
convergence theorem we deduce from (2.6) that

lim L S = —e, j F@)LF ) - Fle) dn.

7IA>5

Usmg these results the next theorem follows immediately
from Ref. 4. Let p, < o be defined by

o© eﬂn
= -  F
Pe Bcvfo T () dn

1 BV
= g e

where g,(s) =2>_, (s"/n").

Theorem 1: When the mean density g is less than p_, the
grand canonical pressure, p;, is determined parametrically
as a function of g by the pair of equations

e g
pepe), g

f X v (é—e—EV(x)

(2.12)

(n) dn

_ 1

(ZTFB)V/I

Bp, =Be f g)F(n)dn
1

X g 4 vnle 76‘/("))-

2B f 4

Ifp, isfinite and pis greater thanp, then p;; is independent of
p and is given by

_ * 1
Bop =e. | e Finldn

1 v Vs
= (278 )" f d*x g 4 uple”7V%).
A‘

Proof: 1t is clear that if 5 <p,, £ (L }—C, where £ is the
unique solution in [0, 1) of

- © L
= BCVJ‘ —g———_— F
o (7-¢)
while if p, < 0 and p>p,, ¢ (L )—1. Since
z ln(l Lo Py

—e | —&  Fnd
CVJ; (e‘gn_g) L(n) 77

() dn,

BL" «
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is uniformly convergent, for £€[0,1 — 6],6>0, to

. f (e,f,,-g_—ég—)F(n)dm for 5 <p..

the result follows without difficulty.
For p>p. we use the inequality of Theorem 4.2 of Ref.
4, viz. for >0,

_ 1 _ — Bk

0< ﬁ——Lvﬂgsln[l E(Lye "]
2

S

which tends to zero as €10. But

In(1 — fe 77

)

converges uniformly for {€[0,1], which proves the result in
the second case. ]

Note that if p. < « we have a phase transition in the
sense that p; has a singularity at g = p.. As was noted in the
Introduction, this result is independent of how £ (L ) con-
verges to 1 in the case p>p, and therefore is independent of
(1/L "¢ (L)/[1 — £ (L )], which is the occupation density of
the ground state. The ground state need not be the only ener-
gy level in which there is macroscopic occupation; in Ref. 2,
for example, there are an infinite number of levels macrosco-
pically occupied. On the other hand, there may not be mac-
roscopic occupation of the ground state or any other level. In
the following theorem we give a condition for the ground
state, and the ground state only, to be macroscopically
occupied.

Theorem 2: Let p, ( p) be the occupation density for the
k th energy level, i.e.,

1 L
pulpl =L
L™ —L(L)
Suppose that v>3 and E5/(E% — Ef) <« < . Then, for
P3P

lim p ()= —p.
and

Proof: To prove this theorem it is clearly sufficient to

show that (1/L")Zz_, [g /e " 4 )] converges uniformly

_1

GL(x,y;t)=p<x—y;t)E[exp{ fV(y+x<T»dr] Y4 xire AL,

where

plx, 1) = (2mt) ~"exp{ — I|x|[*/2¢

for§e[01]
! em_ —ﬂf (FL() CI)“”
and

1 v
O<F%(n) — - <FL(m)<eln + EX? by (2.11)

EL )V/2
v/2 1
<c 14—
7 ( Ef—Et

<C7IV/2(1 + k v/Z)'

Since, for v»3, *”> ~ % is integrable at zero this gives the
required uniform convergence.

3. THE SCALED DENSITY DISTRIBUTION

In this section we investigate the spatial distribution,
scaled in a suitable way, of the boson gas in the thermody-
namic limit. For 4 CA ! let +"(4 ) denote the fraction of the
total number of particles which is in L4, i.e.,

1 & g(L)

V[A £ L()Zdvx
) =5 LM:l[e,,m_ L)]|¢kxl
1 I~
= o) d” 3.1
-= 5t - f|¢ Wirdw ()
If we define the distribution function F% on [0, ) by
i =— 3 | lotLaPa
then
Fj (dn). .
fe,m Sy e 3.2

For technical reason we consider only 4 ’s that are open and
whose boundaries have zero Lebesgue measure. The result of
this lemma coincides with that of Lemma 1if 4 = A ' but the
proof of Lemma 1 does not require Wiener integration
techniques

Lemma2: lim F5(n)=

Lo

FA (77)!

where

FO) = [y, (1= Vi)

and E{-] denotes the average value for all paths x(-) of a Wiener process on R¥®

IE,

cvfw “MFL (dy) = f Ghix,x;t)d"x.
0

Following Ray® and using (3.3) and Jensen’s inequality, we have
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xeA L.
Proof: The kernel of the integral operator e ~ " is
GL(x,p; t), where
0<7<t |x(0) =0, x(¢) = x — yy, (3.3)
(3.4)
(3.5)
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_LJ GL(x,x;,)de_l_J dx ! Jdr E{exp{ — tV(x/L + x(r)/L)};
LY Jia LY Jra

(2m )2 T
x +x(r)ed”, 0<r<t|x(0) = x(t) = 0}

=(27r:)”/2% KETe JXGL,.M—L_,‘(T,"V" expl — (% + 271} 1x0) = xe) = ]

= 11 th{f d*x exp| —tV(x)]lx(O):x(t):O].
(2771 )v/l t Jo x€A 'nd + x(T)/L
The last expression tends to
1 1 ! 1 oo B
_— dt]EU d*x exp[ — tV (x)]|x{0) = x(¢ =0]=————J.dvxe""""=cvf e~ "F, {dn).
2rt )7 1 » p( (¥)11x{0) = x(r) Bt Ja X 4 (dn

Using the notation of Lemma 1 let { B £: nel} be the set of B contained in A. Then

(x,x;t)d”x:z-v(z—:mw—zLAd”xE[exp[—-LIV(xg)) ]x(f ’“|x(0)—x(t)=x]

> S > d”x]E{exp[ - J:V(iiﬂ) dr], x(r)ed L|x(0) = x(t) = x]

V(zm /2 At Jar

V(27TI)V/2 z - J d X]E{l x(T)EAL|X(O)—x(t)_x]

nel

There exists a constant C such that

t/4
fdx]E{lx(r #1%(0) = x{t) = x} > le,z(zﬁ:)m(l—cﬁa)-

v(2 Tt )v/z
This can be extracted from Arima,” Mizohata and Arima,'® Van den Berg,” and various other sources. Therefore
1

. G 1 0
lim — —X,X; { dvx> ——-——j dVXe‘ Vix) — cvj e t-qF d )
2T L TR A ), , ¢ Fatdn)

Hence + Prob{max||x(7)|| > Lo} ]
o 0 eE'; v/4
j e"”Fﬁ(dn)—»f e  "F, (dn), <( ) [e"s' +3 pW, t)d”y],
0 0 v I¥|l > Lo/4
which means (see, e.g., Ref. 11) F4(n)—F, (7). | using Lemma 2 of Ref. 8. Therefore

_ Lemma 3:Let Ay = {xeA ' : V(x) = 0} and suppose eE L\v/4 )
And, = @, then there exists €,> 0 and ¢ >Osuch that for EL  |¢ ¢(Lx)| <( u ) (e~ @1 4 3 (27 )e ~ILieV/0aT — ek
<&y xed, L2 L{Lx)| <c(E ). it

Proof: Since And, = ® we can find 2 6> 0, o> 0 such

By choosing t > = L %6°/645 we obtain

that V'(x + y)> 8if |y| < cand xed. Lete, < 8 /2 and suppose eEL\w4 e
E, <e. Using Eq. 8 of Ref. 8 we have |6 & (Lx)| <( 71-:) (143@7))etrte
_IFkI¢ L(Lx QC(Ei‘)V/‘t/L v/2‘
Theorem 3: If p the
<1E{exp[ J ( x(T))]Icz‘L(LHx(t))I o g<pc n_eB
ol n
lim %(A}:@f e Fmydn,
e 2
Lx 4 x(riea Lo pdo @ =¢)
where £ is as in Theorem 1.
EL v/4 1 If "> ,t
L) wleel - [ -22) T
v o L Be, L
lim vf(4)= f —————F,(n)dy
Lx + x(rjeA f-}, Lo Foro (=1 _
if And, = 0,
using the bound for ||¢ ||, in Ref. 12, Be. (= P
oLy im 1) = (1 - L Je 2 [T F
<( ) [e ~ % Prob{max||x(7)|| < Lo} b P o (€7 —1)
™V if 4,CA.
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Proof: If g < p, the result follows immediately from
Lemma 2. Supposc p>p. and And, = @ and let

pay=L s S
“= ,,Eeepm_g(L JI¢ (Lx))* d *x.
Then again by Lemma 2 v/(4 ) tends to
1 B, = &
-ﬁ_ 72*"? Jc (eB"I _ 1)2 Fy (n) dn.
However,
vid) —vHA)
Z g(L) f ¢ £(Lx)|* d*x
k<e@ ™t —C(L) 4
<¢:6"’4

if € is small enough and the required result follows.
If4,CA4,

VAd) = A ) —vE A —A)=1—+ (A" —4)
1 Br, (= 7
—1—- =
S | G [Pl = En) dn
Bc, &
R —  _F,nd
: pL @) (m) dn

Finally, under the conditions of Theorem 2 we prove that the
condensate density is concentrated at the zeros of the
potential

Corollary 1: Suppose v>3 and EL/(ES — El <k < o

and let
S f UL

1
vild)=——2—"—
= )
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then for g>p.,
Be, Pk
lim vild)= f ——— F,n)d
Jim k; ( 5 b T (1) dn
and
lim vi(4) =0 if And, = 0,
L—+w

= (1 - pT) if 4,C A.

Proof: To prove this corollary it is clearly sufficient to
show that

converges uniformly for {€[0,1]. Since F4(n)<F~(y) this
follows as in Theorem 2.
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We give various “‘nonperturbative” results for strong coupling, ultraviolet cut-off removed limits
of the bare mass in g,:¢ *:,, lattice cut-off, boson field theory. We find that the renormalization-
group, unique, strong-coupling, zero-lattice-spacing, double-limit hypothesis has some
remarkable consequences, which seem difficult to reconcile with other available information.

PACS numbers: 11.10.Gh, 03.70. + k

The results’ of the renormalization group approach? to
the theory of critical phenomena have been in fairly close
agreement with the predictions of the more traditional meth-
ods.> A close inspection,* however, shows that there may be
small but persistent differences. These differences are most
apparent’ in a particular family of relations between the ex-
ponents which describe the rate of divergence (or vanishing)
of the various physical quantities at the critical point of the
system considered, ¢.g., a ferromagnet. The explicit appear-
ance of the spatial dimension in such an exponent relation is
the signature of this group of relations, and the family is
called the hyperscaling relations.

Baker and Kincaid® have emphasized that the renor-
malization group theory of critical phenomena is based on a
double limit hypothesis. The purpose of this paper is to begin
an investigation of this hypothesis. To this end we will exa—l

+ o«

ZH)=M"' jtlljo d¢iexp[ — —;—a" iiol[{zm 2

— o

where N is the number of lattice sites, a is the lattice spa-
cing, {8} is the set of unit vectors parallel to each of the d
lattice directions, the : :imply the usual, field-theoretic, nor-
mal-ordered-product for fields of mass 7, and H, is the mag-
netic field at site i. The formal constant M is meant to impose
the condition Z (0) = 1. This partition function is written in
such a way as to be a lattice cut-off field-theory. The renor-
malization group hypothesis for this model can now be stat-
ed as the double limit gy— o0 , a—0 of the field theory formal-
ism exists and is independent of the order of approach. More
specifically, we are referring to what appears to be the calcu-
lationally most advanced version of the renormalization
group; that is the Callan-Symanzik formalism expounded
for example, by Brezin et al.? Examples of the unique double
limit hypothesized are g*, 7(g*), 7,(g*), and W (g*) (also
called 8 (g*) by many authors). Here in the calculations so far
reported by them, some version of this hypothesis and in
addition, a certain amount of smoothness and differentiabil-
ity near this point, is required for the various quantities
which connect the “bare” parameters g, and the renormal-
ization constants with the renormalized ones. To complete
the theory, the hypothesis will also be needed for various N

*'Work performed under the auspices of the U.S. DOE.
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mine the behavior of the “bare mass” in various strong bare
coupling limits and obtain several results. We will work in
the context of a Euclidean, lattice cut-off, g,:¢ *:, boson field
theory, which is equivalent to a continuous-spin Ising mod-
el. We use d to denote the spatial dimension.

In this paper we compute (based on a monotonicity
property of the critical temperature) bounds on various
strong-coupling continuum limits for the bare mass, and on
the basis of the renormalization group hypothesis derive a
remarkable formula for the amplitude of the correlation
length. This formula implies that there is a particular value
of the parameters at which there is singularity in this ampli-
tude.

Although extension to other lattices is no problem, we
will consider explicitly the hyper-simple-cubic family of lat-
tices. The partition function is

+migli+ 2 gt + SH, ()

r

point vertex functions, but serious calculation of these more
elaborate quantities is currently more often a question of
principle than practice. We will briefly discuss below one
example and show that it relates to the bare mass. Although
the bare mass is not ““universal” its examination does begin
the study of the key hypothesis and may perhaps suggest
directions for further investigation.

If we perform the usual amplitude (Z) and mass renor-
malizations® (mj = m? 4 §m?) then we can rewrite (1) as

- - — N
Z(H)___M——IJ . HdO’,eXp[EK ;0;0i+5
+ e i i o

i=1
~goa;‘—2rr?+1?ai], )

where M is a new normalization constant, and the relation
between the field theory language of (1) and the statistical
mechanical language of (2} is®

8o = goK *a*~/24,
A = |K (2d + m?*a® + m?a® — 1Ca’g,),
H=HKa*~9]"2. (3)

The constant C is the commutator [¢ ~, ¢ *] which
arises from the reduction of the normal ordered products
:¢*:, and in the limit of an infinite system is given by’
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w/2a
C = _ld_J‘ f _dk - . (4)
(m)* J —w2a) mg + 4a7?3 5, sin’(k-da)

The normal ordering is performed with respect to the bare
field, so mj appears in (4). We require m3 >0 to keep the
integral in (4) from being singular; however, as we will see
later, this restriction does not restrict A4 as it can still range
from — oo to + o0, d>2, and, of course, we will find no
problem for d < 2. We have introduced a free parameter, X.
We use this extra degree of freedom to impose the condition

ST 2dx x? exp( — gox* — Ax?)
(O nogo=1= P8

—— (5
ST 2 dx expl — gox* — Ax’) o

which determines 4 as a function of g,. As long as
0<{$?) < o for the cut-off field theory we may always im-
pose (5) by an amplitude renormalization. For large and
small values of g,, 4 (g,) has the expansions

A(Bo) =1 — 68+ 4882 + O (&), Zo<l,
= —28—3— 3 ' — &8 P+ 0@, g>1. (6)

It is convenient to employ the following statistical me-
chanical notation (j lies on a lattice of unit spacing)

/Y = 1_\721<0-00'j>’
£7="3 Plow)/dy), )

where y is the magnetic susceptibility and £ is the dimension-
less correlation length (number of lattice spacings), second-
moment definition. Then the usual field-theoretic, renor-
malization condition,
r (Ig}( b, —p )

:[ad’v“‘ FInZ(H)

—1
exp( — ip-ja V4
i OHWPH, |u_o P! )} ?

~m?+ p* + -, as p—0, (8)
leads to the relations®

m2§ 2a2 — 1’

Z,=K((y/&?. {9)

As partial motivation for studying the bare mass, we
note that one of the important critical indices can be derived
directly from the bare mass

m} = 0-2[2_4_};’2_01 — 2d + 1Ca%g, |, (10)

which follows trivially from Eq. (3). The essential g,:¢ *: na-
ture of the theory is now built explicitly into the functions
A4 (g,)and K (a,8). K actually depends on ma instead of a, but
we will not write the m for simplicity of presentation, as m
will usually be taken to be unity in what follows. If we follow

Brezin et al.? and define
Rygoa)=a’ry=m}a’ — 1Ca’g, = 24 (§,)/K — 2d, (11)
by (10). Then it follows easily that if

§«(K. —K)™", KK, (12)
then for
Q= Z‘lz) /Zy= aiz[Ro(go,a) — Ry(80,0)]
=24 (@)K ~' — K, (8o) a3, (13)
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we have the result that (4 (g,) #0),
lim o2 Q)

= 24 /v (14)
a—0 aa F
The renormalization constant Z ,, is that for ¢ ? insertions

(Brezin et al.?).

In Fig. 1 we show the various strong-coupling limits
wit,h which we will be concerned. Remember, in field theory,
the natural mode of calculation is [(f) in Fig. 2] gom? ~*
varying along the line £ ~' = a = 0 (£, = 1), and the goal of
the field theoretic approach is to reduce any calculation to
one of these types of calculation. In the mode of presentation
in Fig. 1, this line is contracted to the upper left-hand corner
and the field theory point g, = «, @ = 0 is the whole top
border. We have replotted in Fig. 2 the same picture in natu-
ral field theory variables. The abscissas are implicitly related
by Eq. (3). In the statistical mechanics of critical phenomena,
the natural mode of approach is to reach the line £ ~' =0
along a vertical path in Fig. 1, e.g., paths (a) or (b) in Figs. 1
and 2.

Now itis usual in the framework of the renormalization
group approach’ basically to project path (b} (a typical statis-
tical mechanical one) on the top border in Fig. 2 in such a
way as to be able to use the cut-off removed field theory. To
clarify the relation of the approach to Eq. (14), we use the
chain rule of partial differentiation to “‘turn” the direction of
the derivative in (14). This procedure is claimed to be plausi-
ble in the renormalization group approach because it is cor-
rect order-by-order (d < 4) in perturbation theory, and so
holds for g, sufficiently small, i.e., for path (e} of Figs. 1 and
2. Thus, writing by use of Eq. (3),

Q(gpa) = Q(248,a" ~*K ~,a), (15)
we have
aQ s d_a _z<<9Q) (3Q)
S| =24(d — 4 K 4 —= _—=
o 3 ( ot 980/ a e da /g,

= 4~ 48,(32)

(), Sl v

Then, combining (13), (14), and (16) with the assumed, con-

1OR—

%

FIG. 1. Various different strong coupling, ultraviolet cut-off removed lim-
its. Here £, = £2/(1 + £7), Gy = &o/(1 + ). (a) is the Ising limit,

8o = 80 = «, a—0. (b} is a typical statistical mechanical problem, g, fixed,
a—0. {c)is the case @ = 0, g 0. (d} is the case @ = 0, §,—0. (¢) is a typical
field theory problem 0 < g, < « fixed, a—0. It is illustrated here for 4 = 2,
and g, determines the slope of the line. { f} a = 0, g;— « is completely
contained in the upper left hand corner.
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FIG. 2. Various different strong coupling, ultraviolet cut-off removed lim-
its. Here &, = £2/(1 + £2),G, = gym® ~* /(1 + goym® ~*). (a)isthe Ising limit
8o = go = o, a—0. (b} is a typical statistical mechanical problem g, fixed,
a—0, illustrated here for d = 2. (c) is the case @ = 0, §;— oo and (d) is the
casea = 0,,—0. Both cases are contained in the upper right-hand corner of
the figure. () is a typical field theory problem 0 < g, < o fixed and ¢—0. ( f)
is the usual field theoretic strong coupling limita = 0, g7— .

tinuous differentiability ata = 0, g, = o, we have the renor-
malization group result

lim (d — 4)g, 2280 _ 5 )

By— 0 go m

In other words, in Fig. 2, paths ( f ) and (b) will yield the same
result as (3Q /da), isassumed finite in and at the upper right-
hand corner of Fig. 2, so that the limit as 2—0 of a(dQ /da),,
vanishes. Likewise the last term in (16) vanishes because
{d1n K /J In a) vanishes as a—0.

Thus, under that hypothesis we get the same result for
the field theory approach ( f) and the statistical mechanical
one (b) and even (a) which is assumed to be a uniform limit of
paths of type (b).

We begin by exploring various strong-coupling limits of
mg. First the spin-1 Ising limit,® with g;— oo and a fixed can
be given. Here g,— oo ; thus combining the expansion of
A (o), Eq (6), with Eq. (10), we have (keeping a fixed)

lim [m3a®> + K ' + 2d + lga* ~4(3K — Ca®=?%)] =0,
8o
(18)

mj, K, and C are all functions of both g and g,,. Inspection of
(18) shows that the coefficient of g, must be negative of zero.
Physically, we must have m3 >0 so C can be defined by (4) in
a nonsingular manner.

We need to consider in detail the behavior of C as a
function of m? and dimension. Figure 3 shows a sketch of its
behavior. Following the methods of Montroll and Weiss,” if
we use the identities

sin?0 = §(1 — cos 260), Ifz) = - f 049, (19)
T

(4]

b~! =f e~ dy,
(¢]

then we can write

C=1ia®* f dy e ™" (e Iy y)]°. (20)
0

Now as
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d<2
)

Las2
K /3 |

0.0 L
0.0

FIG. 3. Sketch of the behavior of g ~ 2 C{m}a?) for the two cases d<2 where
C(0) = » andd > 2 where C (0} is finite but always bigger than K. /3, where
K_ is the Ising model critical point.

lzz
Iyz2)~1 + —(‘11—')—2— + - z£1,

eq I2)~(2m2)~ (1 + -81- ¥ ) 221, 1)
74
we can give the estimates
c a4 mia?
=~ ) — a0,
m2a? 0 @® (22)
~a* " %d), d>?2, mia*-0,
az — d(moa)d -2
o~ WF(I — %d), d<2, m302—>0, (23)
~ ﬂl_ﬁ)’ d = 2’ m(z)az——)o’
2T
where
1(°, _
od) =—[ (e~ L ay, (24)
0

is a convergent integral for d > 2.

With these asymptotic results for C, we are in a position
to analyze the limit (18). As go— oo for fixed a > 0, we expect
and can prove over a limited region that X (a,g,)

—K (a,8, = 8o = o), the Ising model case. Since’ 3 c(d)
>K,.>K(a>0)ford = 2,3,..., we see from Fig. 3, [or more
formally from Eqs. (22)(24) and continuity] that there is a
finite, nonzero value of m3a* which solves

Ca*~? — iK (8,0) =0. (25)

If we perturb this solution by an amount of order (1/
8oa* ~“¢) then we can make the [ ] in Eq. (18) vanish. Thus
the limit of m3a? as g,— o is given by the solution of Eq. (25).
The limiting value, lim,_, lim,_,_ m3a?, is then the solu-
tion of

lima?~2C = % fo dye” "™ eIy =K., (26)

a—0

where K. is the critical value for the Ising model and has
been determined numerically'® to be 0.440 68..-(exact),

George A. Baker,Jr. 145



0.221 71, 0.145 88, 0.114 03, and 0.09236, for d = 2-6. This
result, Egs. (25) and (26), gives the behavior of the bare mass
as a function of lattice spacing in the Ising model or strong-
coupling limit.*

The limit in the field-theory direction [path (), Figs. 1
and 2 ]a—0, with g, fixed gives,
24 (g,) — 2dK 1.
———(gfzaz ) +o&limC(27)
Necessarily 2,—0 in this limit and upon expansion, this for-
mula must reduce to the usual, lattice-cut-off, bare coupling
constant expansion for the bare mass, to which we do not
make any further contribution. In fact, one could use the
usual field theory perturbation expansions to provide an ex-
pansion of the K (@ = 0, §,) in powers of g, by means of Eq.
(27).

We can, however, compute some further g— o, a—0
limits. They are characterized by g, = const, a—0 [path (b)
in Figs. 1 and 2 ]. If we rewrite Eq. {10) as

mia® = (12/K *)g,(Ca”~?) — 2d + 24 (g,)/K, (28)
then we may deduce that lim,_oma” is finite for 0 < g, < .

If g§,— o0, [path (c), Fig. 1], then, as in Eq. (18) we find that
the coefficients of g, must cancel so we get

lim m) = lim(
a—0 a—0

i |2 “aye et | - 2K o= 0] <0

(29)

determines the value of m2a”(g,). As we have no reason to
suppose that lim, K (g,, @ = 0} is not equal to K, (Ising
model critical point) we obtain, using that hypothesis, the
same result hereas in Eq. (26). A special case occursind = 1,
asweknow from general results thatlim, 4K (§,,a) = oo and

mgya<l, Eq. (28) becomes, according to the estimate (23),

mgazf:# _oy HMBd (30)
mya K
Thus comparing orders of magnitude,
lim (3mpa/ &) =limK *=0. (31)
a 07 a—0

Result (31} holds uniformly in 0 < g, < «, so that we can
conclude

lim lim (mya/g,) = O, (32)
2o-+0 a -0

and also,
lim lim(mqa) = 0. (33)

Ly ro0 @+
In order to extend our study of the limit as §,—0tod>2
dimensions we first observe

—2d +24(8,)/K (8,,0)<0 (34)

uniformly in g,. This remark is, of course, trivialind = 1. It
is also trivial for g,> (1" (3/4)/T (1/4))*~0.114 236 6452, as®
A (8,)<0and K>0in the range. Since 4 (§,) is known®tobe a
monotonically decreasing function of g, and the left-hand

side of (34) is exactly zero for g, = O by the well-known solu-
tion of the Gaussian model, (34) will follow from the mono-
tonicity of K (g,,a)in g, near @ = 0. This monotonicity is born
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out numerically.® We can see that it holds for very smali g,
analytically as follows. For a general hypercubic lattice, Ba-
ker and Kincaid’s® combinatorial data yields for the Wortis
method'! in terms of the renormalized cumulants M, ,

£ =KM,/(1 — 2dKM,(K.g,)) + O (&), (35)
where use has been made of the results M,~ — 4lg, and M,
~0( g3}, n>6. Thus for g, small enough, we obtain

K (20a) = [2d + m*a®)M,(K.8)) ™' + O(&).  (36)
We may expand

My(K&)=1-242,S(K)+O(&), (37)
where we have the high-temperature expansions’”
S(K) =K*+3K*+10K°+ 35K + ..., d=1

=2K? + 18K* + 200K ® + 2450K ® + .., d=2

=3K?+45K* 4 930K®+22365K* 4+ .., d=3,
=4K? 4 84K * 4 2560K ® 4+ 950 60K ® + ..., d =4

Now by examining the diagrams which lead to this se-
ries, we find at once that 1 + 2 §(K ) is the generating func-
tion of random walks which begin and end at the origin.
Thus"?

1+285(K)
1 J"f d d —1
= d0,.<1 — ZK( cos 9,-)) .
(277')d - iI=Il igl
(39)

Manifestly, S (K ) is positive by (38) and (39), thus we see
analytically that K (g,,a) does increase with g, for g, small
enough. If we now consider (28) for d>3, so that both K_ {g,)
and c(d ) are finite, we have by (34)

m3a*<(12/K*) goeld ), (40)

as Ca® ~?<c(d). Thus, as K>2d we conclude

0<lim lim{m2a®/g,)<3c(d )/d* < o0, (41)

8o—0 a—0
as (41) holds uniformly for all 0 <@y < .
For the final case d = 2, (Ca® ~ % diverges weakly so we
find from (28}, using (23) and again (34)

0< lim lim [ — m2a*/((In go)&o)] <?3' . 42)
T

&6 0 a—0
These bounds (40)—(42) depend on the hypothesis that (34) is
correct, which in turn follows from the idea that K (g,,0) is
monotonic in g, over the range 0<g,<0.1142.
If we pick up from (16) and (13) the term which is set to
zero in the derivation of (17) we have, along path (b), Figs. 1
and 2, which is appropriate to (14),

i oS (1n (22 @K o) — K GOl H, =0

(43)

The last derivative term in {16} can be shown, by use of {43),
to vanish in this limit [assuming (17)] and so is not included
in (43). If further, in the neighborhood of a = 0, g, fixed we
introduce the representation

§=D, (&)1 - K/K. )}, (44)
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then using (44) and (9), we may write
K (£00)=K (8,0)[1 — (D (Bo)ma) "] (45)
Thus, using (3), we obtain from (43), after taking the limit,

A& K@) iD;(go)] 1,
(4—dJg Tl K0 +— .z +=
=0. (46)

If we integrate (46) over g,, we obtain (assuming v to be inde-
pendent of g, as is contemplated in the renormalization
group theory of critical phenomena)

(D, (@)1 = 95}5@%?0“2‘ s =, (47)
A (&)

where O is a constant of integration which could depend, for
example, on m, but not on g,. For d = 1, (45)-{47) are not
expected to hold as K (8,,0) = . Ford>2, as
0 <K (§,,0) < o forall g,and 4 (§,) = 0 for g, = 0.1142.-- as
remarked above, (47) implies a singular amplitude for
D (g,). For g,—0 the vanishing of D | is presumably related
to the change of v to 1/2 in the Gaussian model (g, = 0) limit.
The implication that D (§,}—0 as 8,—>c seems difficult to
reconcile with the nonzero values determined numerically
for this limit. Also, as D, (g,) should be real and positive, the
change of sign of the right-hand side of (47) at §,~0.1142-- is
difficult to accomodate, unless, for example, v changes
there.

From the above analysis, using standard (nonrigorous)
representations of some of the general features observed nu-
merically for the quantities involved, we conclude that the
full renormalization group hypothesis does not seem easy to
accomodate over the whole range g,. We remind the reader
that aithough the hyperscaling index relations are known to
hold for the two dimensional Ising model, neither the critical
value of the renormalized coupling constant, g*, nor the
critical indices as predicted by the renormalization group
theory' have been computed to any reasonable degree of ac-
curacy to permit checking against the exact Ising model val-
ues. In three dimensions, where the renormalization group
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theory results seem to be more accurately determined, laswe
remarked above, there may be small but persistent differ-
ences with the Ising model results for g* and the critical
indices. In one dimension, the Josephson relation,

“dv =2 — a” isknown'* to fail although other hyperscaling
relations hold.
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Existence and uniqueness of generalized vortices
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We investigate properties of the static noninteracting vortices determined by equations which
generalize the first order Ginzburg-Landau equations. We prove that for each set of # points in
the plane a unique solution exists to the first-order equations, with vortex number #. These n
points mark the positions of the n vortices and are the only points at which the Higgs field |& |
vanishes. Regularity properties of the solution are related to those of an arbitrary non-negative

function in the theory.

PACS numbers: 11.10.Np

I. INTRODUCTION

Vortex solutions of the abelian Higgs model have been
the subject of detailed investigations in recent years. Proper-
ties of the static solutions, which are determined by the
Ginzburg-Landau equations, depend on the value of a di-
mensionless parameter 4. Of particular interest is the critical
value A = 1, for then the static vortices do not interact and
stable multivortex solutions exist. Only for A = 1 do the
masses of the Higgs and gauge mesons become equal, and
intervortex forces cancel exactly. The mass of the multivor-
tex configuration depends linearly on the vortex number #,
and solutions can be obtained by solving certain first-order
equations, as Bogomol’nyi' has shown. These first-order
equations are of particular interest because their structure is
related to that of the self-dual equations.?* Following the
analysis of Weinberg,* one expects the most general solution
to depend on the 2n parameters which determine the vortex
positions. Taubes® has recently verified this by proving that
such an n-vortex solution exists and is unique.

The purpose of this paper is to show that the results of
Taubes can be extended to apply to a much wider range of
models. It has recently been shown® that the noninteracting
phenomenon of vortices is not unique to the particular ¢ *
interaction of the Higgs model, but is a general property for
Hamiltonians of the form

K= \F,F +F(6 DS + V(). (1.1

Here (¢ ',¢ ) is a two-component real Higgs field, with
D,¢°=03,¢¢ — €’ ®4,, and we allow only two space di-
mensions. The expression (1.1) is the Hamiltonian for a static
system in the gauge 4, = 0. F and ¥ are continuous real
functions of |¢ |, to ensure gauge invariance, and are non-
negative to ensure positive energy. This Hamiltonian allows
vortex solutions provided V'has a unique minimum at a non-
zero value of |¢ |, to produce symmetry breaking. In order to
obtain the noninteracting property we define V, for each F,
according to

V=lw? (1.2)
where
w(|¢|):f sF(s) ds. (1.3)
o1
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Evidently ¥ is non-negative and has one minimum, which
we have chosen by a suitable rescaling to lieat [¢ | = 1. A
special case is F =1, for which ¥ = }(|# |* — 1)*, and we re-
gain the Higgs model with the special coupling constant
A = 1 mentioned above.

The energy is bounded below by 27nw(0) and this
bound is attained if and only if®

Fi,+w(lél)=0, (1.4)
D¢ —e€,D;¢"=0. (1.5)
The vortex number 7 is defined by
n :Lf F, dx, (1.6)
27 Jw

and we have assumed » > O but the case » < O is treated anal-
ogously. The clue to the noninteracting property is that the
energy depends linearly on n. Weinberg’s analysis* general-
izes to suggest that an n-vortex solution of Egs. (1.4)and (1.5)
depends on precisely 2n parameters, the vortex positions,
which correspond to the zeros of the Higgs field |¢ |.
Equations (1.4) and (1.5) are a simple generalization of
those obtained by Bogomol'nyi,' and as before*” can be re-
duced to a single nonlinear equation. Writing
' +id* = |4 |e, we find from Eq. (1.5)

4, = —dia—¢€;9,(In|é ), (1.7)
and from Eq. (1.4)
Aln[d | + w(lé]) = [d,.0:]a. (1.8)

a is a gauge parameter, which we choose to be
" x,—a
a=3 arctan(——' - ), (1.9)
i X, —a
where 7 is the vortex number, and the 2n parameters (a') are
the vortex positions. Equation (1.8) becomes

Alnfd |+ wl(idl) =273 8x ~a),

i=1

(1.10)

and is supplemented by the boundary conditions necessary

for finite energy
lim |¢|=1,
Xl v ‘ (1.11)

lim Inj¢|=nIn|x —a,

—a' 0

x
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for i = 1,...,n, where n, is the order of vanishing of |¢ | ata'.

For F =1 Taubes" has shown that each set of # points in
R’ determines a unique classical solution to the first order
Ginzburg-Landau equations. We obtain a similar result in
general (Theorem I) provided F is restricted as follows:

{i) F(s) is continuous and F (s)>0 on [0, «),

(i) F(1)>0,

(iti) {5€[0,1]:F (s) = O} has Lebesgue measure zero.
The condition (ii), used in Propositions 3.7 and 4.1 below,
states simply that the mass m of the elementary excitations,
namely the Higgs and gauge mesons which are of equal
mass, isnonzerosince m*> = F(1). The condition F (1) > O also
ensures that the minimum of ¥ at |@ | = 1 is unique. The
condition (iii) is used in Proposition 3.10 to guarantee
uniqueness of the solution.

We prove Theorem I by following the same strategy as
in Ref. 5, defining on the appropriate Banach space a func-
tional @ which is minimized by Eq. (1.10). Several steps in
Ref. 5 require modification to accommodate general func-
tions F (|4 |). In particular, we require the a priori result that
all weak solutions of Egs. (1.10) and (1.11) satisfy |¢ |<1.
Regularity properties of the solution then depend on those of
Fon[0,1]; in particular, the fields ¢ °, 4, will be C * provided
Fis C * on [0,1]. In this case the arguments of Ref. 5 show
that we have obtained all finite energy solutions of Eqs. (1.4)
and (1.5).

A problem that remains concerns the equivalence of the
first-order equations (1.4} and (1.5} and the second-order
equations obtained by varying the Hamiltonian (1.1}, assum-
ing finite energy. Taubes® has demonstrated the equivalence
of the first- and second-order formulations for F =1, and
although the proof generalizes for functions F with certain
restrictions, such as 2F + |¢ | F'>0forall |4 |, modifications
appear to be necessary for a general proof.

Il. DEFINITIONS
Following Taubes,” let
o= — iln(1+—L), 2.1
= [x — a’|2

where A is a suitably large real number to be chosen below
(Remark 4.3). Define

1 A
g =4

A SaF A 22

so that on R*\u/'_ , {a'}, g, and — Au, agree. We note that
Uy, & 1 — e““eL *(R?). Define the unknown function v by

u, +v=_2Injg|, (2.3)

and if |§ | satisfies Eq. (1.10) with the boundary conditions
(1.11) then v is a solution to

Av + 2wle™ V72 — g, =0
with

(2.4a)

lim v =0.

x| +o

Define also the functional

(2.4b)
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a(v) = Lz{%‘va — v(2w(0) _ go) + W(e"‘"* v)/2)
— W(e*"?)}dx, (2.5)

where

Wix)= 4J-de[—t ﬁsF (s) ds, (2.6)

)
and where we have used the notation Vv = (d,v,d,v). The
variational equation of a(-) is formally Eq. (2.4a). However,
we will find it useful to define another functional @ which can
be more easily extended to a nonlinear functional on a suit-
able Sobolev space. Define F by

F(s)=F(s), 0<s<l
=F{l), s>1 (2.7)

and then define @, W, and the functional @ in the same way as
above, by simply replacing F by F.

Now let us mention the various spaces used below. C*
(R?) denotes the space of functions with derivatives of order k
continuous on R%. C *(R?)is the intersection of the spaces C *
(R?) over all k, and C & (R?) is the space of infinitely differen-
tiable functions with compact support. The Sobolev space
W ™#(R?) is defined as the completion of C &(R?} in the norm

aau aaz
ollmp = 3 | o

a, + a<m 6x,"' 5x2"2

ol (2.8)

with @, @, non-negative integers. Here, the L norm ||v]|, is
defined by

ot = [ forrax] . 29)

Properties of the spaces W ™*(R*) may be found in Adams.’
We will encounter the weak form of Eq. (2.4a). Define

(grad a(),h) = f {V-Vh + goh — 2w(e ™ %)k }dx.
RZ

(2.10)

By a weak solution of Eq. (2.4) we mean a function
veW "}R?) nC (R?) such that for all ke W "% (R?) {grad
a(v),h ) = 0. We will prove (Lemma 3.9) that a weak solution
satisfies u, + v<0, implying that the solution of Eq. (2.4)
minimizes both functionals 4 and a.
Let us now state the main result of this paper:
Theorem I: For every point (a,,...,4, ) in R* X R?
XX R* = R*" and u, and g, defined by Egs. (2.1) and (2.2),
respectively, there exists a unique function
veW "“*(R*NC (R?) which is a weak solution of (2.4a) and
(2.4b).
Regularity properties of », which depend on F, are dis-
cussed in Sec. V. Since F is continuous we always have
veC '(R?).

lIl. PROPERTIES OF THE FUNCTIONAL 4

Proposition 3.1: a defined on C & (R?) can be extended to
a nonlinear functional with domain W "}(R?).
Proof: We show that d(v) is finite for each ve W '"2(R?).
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Now

al) = fz{HVvlz +uf+ W(e“"+ 0/
— W (") — 2vfe' sF(s) ds]dx,
where f= — 2i(e“”?) + g,. Let A = sup{ F (s):s€[0,1]} then

as|f]<go + A (1 — e*), feL *(R* and henceJ vf dx isfinite.

RZ
Since
W (el + /%) — W (e"?) — ZUJ sF(s)ds
/2 ¢ 0
=J. &J sF(s)ds,
e t e
‘ W (el + ) — W (") — 2vf sF(s\ds
0

LAde*(e’ —v — 1). (3.1)

The proof now continues as in Ref. 5, Proposition 4.1. H
Proposition 3.2: The Géteaux derivative of 4, @'(v;4 ), ex-
ists for all v,hAc W "}(R?) and

&) = lim %[d(v +th) — )]
- f (V0-Vh + goh — 2B(e + Vh Jdx. (3.2)

Furthermore, for fixed v, @'(v;-} is a bounded linear function-
al on W (R?). For fixed heW ¥R, @(-;h ) is a nonlinear
functional with domain W "“3(R3).

Proof: Let v, he W "}(R?), then

(1/t)[alv + th) — alv)]
=f,{Vv-Vh + goh — 2i(e™ Y2k Jdx

+ %szh Pdx + L:{ — 20(0)

+ 2&7(8("" + v}/2)h + -I—(W(e(""+ v+ th )/2)
t
— W(e("u'*— v)/zn}dx. (33)

Theintegrand in the third term on the right-hand side of (3.3)
equals

i, t o4 Th)/2

1 | 4d?§£§ sF(s)ds

t el -+ 1172 fu, + 01/2

and this in modulus, using arguments like those which lead
to (3.1), does not exceed

(4 /t)e™+ e — th — 1).

Equation (3.2) now follows from the arguments in Ref. 5,
Proposition 4.2. We note also that for v, he W *4(R?),

|a'(v;h )|<[(L:|Vv|zdx)”2 + (J;f2dx)1/z
4 (f( - l)zdx)‘“]nh 2

where fand A are as in the proof of Proposition 3.1. |
Remark 3.3: For eachve W "*(R?) we let grad d(v) denote
the bounded linear operator d'(v;-) defined by (grad a(v),h )
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= @'(v;h ) for each he W "*(R?). We will let a’(v;4 ) denote the
formal expression

JZ[ Vu-Vh + goh — 2w(e )b }dx, (3.4)
where
w(t) =flsF(s)ds. (3.5)

For suitable ve W *(R?), e.g., when v + 1,<0, a'(v;) will be a
bounded linear functional on W (R?). In this case we let
grad a(v) denote this bounded linear functional, in agreement
with the definition of Eq. (2.10).
Proposition 3.4: 4 is a convex functional on W '3(R?),
Proof: For u, veW “}R?) and using the fact that 750,

(grad d(u) — grad 4(v), u — v)
=a'(uu—v)—alvu —v)

= J. {|Vi — Vu|* + 2(u — v)(@(e* 2

_ w(e(u(, + u)/Z))}dx
>0. (3.6)

Equation (3.6) implies that the Giteaux derivative of 2 is
monotone.The convexity of g follows from Ref. 8, Theorem
5.1. [ |

Proposition 3.5: v, minimizes @ on w"*R?} if and only if
grad d(v,) = 0.

Proof: This follows from Propositions 3.2 and 3.4 and
Ref. 8, Theorem 9.1. n

Proposition 3.6: d is weakly lower semicontinuous on
W l.Z(RZ)‘
Proof: This follows from Proposition 3.2 and Ref. 8,
Theorem 8.6. ]
Proposition 3.7: Let veW "*(R*)nC (R?); then grad
a(v) = 0 if and only if grad a{v) = 0.

We state without proof the following:

Lemma 3.8: Let 2 be a bounded open set in R? and
veW (2 )nC (42). Suppose that v(x) = O for all xed12, then

vadx=0.
n

Lemma 3.9: Let ve W "}(R*nC (R?) and suppose that ei-
ther grad d(v) = O or grad a{v) = 0, then v + 1,<0.

Proof: We give a proof assuming grad a(v) = 0.Let
yYeC & (R?) have the properties (x) = 1 for |x|<1, (x) =0
for |x|>2, 0<y(x)<1, and |V¢(x)|<N, N > 0, for all xeR™.
For R > 0, define ¢ by ¢ (x) = #(x/R ) for xeR>. Let
N, = {xeR%:uy(x) + v(x)>0}. 2 is an open set. Suppose
that £2, is nonempty. By continuity of v, a, 42, for
k = 1,2,...,n. Define

_ [(EW” +u)/2 1)¢R
® = o on R:\£2,.

on &2, (3.7)

Then 5, €W * (R?), and has support in the closure of
D,z (0) = | xeR%:|x| <2R }. As grad a(v) = 0,
[V0-V75 +8oMe — 2wle™ * **)np Jdx,

0=alom)= [
(3.8)

25k
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where 2 = 02,nD,(0). Putting 2u = u, + v we obtain

{ = 2w(e"fe” — Vg + 2{e* — 1)Vu-Vip,

0.
— (" — 1)Vuy-Vifg
+ 2|Vu|%e“dr — Vu-Vuey
+ gole* — ihs Ydx = 0. (3.9)
Now
9o
ox;

and equals zero on 412 ;% for i = 1,2; hence by Lemma 3.8,

(e — 1) —gpeW "'(12 5 )InC (T 1)

f V-{(e* — 1)Vugpr) dx = 0. (3.10)
2%
This equation implies that
—f (e“ — 1)Vu,- Vi dx
12 ,%
= {e“Vu-Vu, — (e — 1) gyl ¢g dx (3.11)
2%

since Au, = — g,ond2_ . Substituting (3.11) into (3.9) yields
j {1Vu|%e" — wle“)e* — 1)}y dx
12,5%

= —f (e" — Y)Vu.Vyy dx. (3.12)

25

Since Fis continuous and F (1) > O there exists a constant
d>0such that — w(e“)(e* — 1)>d min{e* — 1,(e* — 1)?), so
by (3.12) and the fact that y,=10n 2 7,

J {|Vul’e" + d min(e* — 1,{e" — 1))} dx
2

R

<f(f—UWMW%Jﬁ

2R

X vl = 1] ax.
R Jo,,
Aset — 1 =e" e — 1) 4+ ("> — 1), e — 1|<e" — 1|
+ |e* — 1|eL }R?), and as |Vu,|eL *(R?) we also have
|Vu|eL *(R?). We conclude from Holder’s inequality that

L" e 1)[Vu|dX<(fR:(eu B l)zdx)‘/l
| ([ Jvurax) <

Now letting R— + oo in (3.13) we obtain
J min{e* — 1,(e* — 1)’} dx = 0.
2
Since u is continuous on {2 we conclude that {2, has zero

measure, a contradiction. [ |

Proof of Proposition 3.7. The proposition follows from
Lemma 3.9 and the fact that

w(elun + 1‘}/2) — L-U-(elu,, + 11;/2)
whenever u, + v<0. |

Proposition 3.10: There is a unique function
veW "HRANC (R?) such that

d(v) = inf{d@(u):ueW "R?)}. (3.14)
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(3.13)

Proof: Suppose to the contrary that there are two func-
tions v,, v,e W "}(R*)NC (R?) which satisfy (3.14). By Proposi-
tion 3.5 it follows that grad a{v,) = grad a{v,) = 0, and so by
Lemma 3.9 that v, + #,<0 and v, + 4,<0, and that
a'(vy,v, — v,) — a'(vyv, — v,) = 0. We shall contradict this
last statement. Since v, # v, there exists a neighborhocod ¥
which does not intersect {a,:k = 1,2,...,n} on which v, #v,.
For xeN

200,x) — vafx)) [Ble! 4+ 1417

. w(eluu(x) + v,(x)l/z)]
= 2{v,(x) — vy(x))
(,m,m EINENIVA
XJ SF (s)ds > 0, (3.15)
el ERVIE

since the measure of {s€[0,1]:F (s) = 0} is zero. By (3.15) it
follows that in fact @'(v,,v, — v,) — @'(v,0; — 5)> 0. ]

IV. EXISTENCE AND UNIQUENESS OF WEAK
SOLUTIONS

It follows from Propositions 3.5 and 3.7 that the exis-
tence and uniqueness of a weak solution to Eqs. (2.4a) and
{2.4b) follows from the existence and uniqueness of a func-
tionve W "R*)NC (R?)suchthatd(v) = inf{a(u):ueW "}(R?)}.
The uniqueness follows from Proposition 3.10. The rest of
this section deals with existence.

Proposition 4.1: There exist constantsa > 0, band £ > 0,
such that for all ve W "}(R?),

SO 12
>

> — — (4.1)
(1 +klvll,)

In order to prove this proposition we prove some properties
about u,,g,, and .

Lemma 4.2: There exists a positive constant ¢ such that
for all x<O0,

we¥)2c(l — e%). (4.2)
Proof: This follows from the continuity of Fand the fact

that F(1)>0. |

Remark 4.3: From now on we assume that the constant
A in the definition of 4, and g, satisfies 4 > 4n/c, where ¢ is
the constant in (4.2).

Lemma 4.4: Let u, and g, be defined as in Egs. (2.1) and
(2.2), respectively. Let M > 0, then for A > 4n/M
(i) there exists a constant ¢, > 0 such that for all xeR?,

M —g\x)>c; (4.3)
(ii) for all xcR?

—golx) + M (1 — ™) 0. (4.4)

Proof: This lemma follows from a minor modification of
Ref. 5, Lemma 5.2. [ ]

Proof of Proposition 4.1: For veW (R,
@'toy) :f 1Y) + gov — 2™ i dx.
R,‘

Let 2, = {xeR*w(x)<0}, 2, = {xeR*:0<0(x)< — uyfx)},
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and 2, = {xeR%v(x)> — u,(x)}. On £2,, using Lemma 4.2,
gov — 2@(6(“” + u)/l)v
= |v|( — go + 2l * ”)/2)

>|vl( — go + 2¢(1 — e+ %)

>l(—go+c(l —e* ™)

= [v]( — g+ (1 —e))

+clvle*(1 —e ")

>[v( — gy + (1 — "))
clv|’e*
L+ ol

where we have used the inequality
1 —e *>x/(1 +x)

for x>0. By the remark following Lemma 4.2 and by Lemma
4.4 it follows that

gob — 2i(e + “”2}u>c—'|v—l—~—. (4.5)
1+ |v|
Let A = sup,_,F(s) < w. Then on {2,,
1
—2le™ V) = ZJ sF (s)ds
4 l" -
> — 2AJ sds
=A (e — 1)2A (uy + v).
Hence
v go — 20(e™ T V2 >0( 8o + Aug) + AV%. (4.6)
On 2,
— 2!t t ) = 2F(1)f sds
1
=F(l)fe***—1)
>F (1)(ug + v),
whence

v go — 2l * V) >v( go + F (ug) + F(1p°.  (4.7)

The rest of the proof follows from (4.5), (4.6), {4.7), and minor
modifications of Ref. 5, Proposition 5.1.1

Proposition4.5: Thereexistsve W "(R*)NC (R?)such that
a(v) = min{a(u):ueW "}(R?}.

Before proving this proposition we establish the following.
Lemma 4.6: For each ve W (R?), (e * %)L *(R?).
Proof: Let 2, = [xeR%:u,(x) + v(x)<0}, 2, = R*~102,.

On 12,

1

sF (s)ds

Qi+ A2

ng(e(“n + v)/Z) — J
L4

<A 72)(1 —e* 7t ), {4.8)

where A is as in the proof of Proposition 4.1. On (2,,

{uo + V)2

Dlet e+ 2 —F(l)f sds
1
F

F) g+ _y, (4.9)
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Combining (4.8) and (4.9)

liw(e'“ ™ %) <const{e“|e" — 1|+ [e* — 1|}eL ¥R?).

Lemma 4.7: Let G (x) be a real Giteaux differentiable
functional defined on a real reflexive Banach space E, which
is weakly lower semicontinuous and satisfies the condition

(grad G(x), x) >0 (4.10)

for any vector xekE, ||x|| = R > 0. Then there exists an interi-
or point x,of the ball { xeE:||x||<R } at which G (x) hasalocal
minimum so that grad G (x,) = 0.

Proof: See Ref. 8, Theorem 9.8.

Proof of Proposition 4.4: By Propositions 3.2, 3.6, and
4.1 the assumptions of Lemma 4.7 are satisfied for R suffi-
ciently large. As W *(R?) is a reflexive Banach space, there
exists ve W "%(R?) with grad a(v) = 0, and so v is a distribu-
tional solution of

Av = —2@(e“ ") + g,

By Lemma 4.6, AveL *(R?) and hence ve W 2%(R?). By the So-
bolev imbedding theorem, see Ref. 7, p. 97, we conclude that
veC (R?). The proposition now follows from Proposition

3.5. n

V. PROPERTIES OF THE SOLUTION

We remark that since u, depends on 4 then the unique
minimizer v of G(-) on W '*(R?} will also depend on the choice
of 4. By the same argument as in Ref. 5, 1, + v can be shown
to be independent of the choice of A, for A sufficiently large.

We noted in Proposition 4.4 and 4.8 that v is continuous
on R?. We can show more. We show also that Lemma 3.9 can
be sharpened.

Proposition 5. 1:
(i) If the first k& derivatives of F are bounded on the interval
[0,1], then veC * * '(R?).
(i) If Fis C = on [0,1), then veC =(R?).

Proof: Clearly (i} implies (ii). v s a weak solution of

Av = — dwle™+9?) + g, (5.1)

and u,, + v<0on R Let v;=dv/dx,; then on differentiating
{5.1) with respect to x,,

AUi — eu,, + UF(eu‘. + U)/Z)(Ui _+_ %) _+_ _(?_gp"
ox, ox,
which implies that 4v,eL *(R?) and hence that v,e W **(R?)
for i = 1,2,...,n whence v,€C (R?) by the Sobolev imbedding
theorem (see Ref. 7, p. 97) or veC '(R?). Repeating this argu-
ment gives (i). Since ¥, + v<0, the regularity properties of v
depend only on those of F on [0,1].

Lemma 5.2: Let F have bounded first derivatives on the
interval [0,1]; then the weak solution of (5.1} is C {R?) and
u, +v<0.

Proof: By the continuity of F there exists 0 <7 < 1 such
that F(s)>y >0 for r<s<1. Let
N = {xeR%u,(x) + v(x) > 2In r}. Then a, ¢ for
k = 1,2,...,n. It will be sufficient to show that 4, + v <0 on
1. We have w = w(¥(x)), where ¢ = ¢+ ?"? as above. Then
from the strong equation (5.1), Proposition 5.1(i), and using
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Au, = — g
[4 — bV — Y?F()Jw =0, (5.2)
where
2 F'iy)
b= (= 4+ ¥y,
<¢ * F(¢)) v

Clearly b is bounded and ¢*F (/) > 0 on £2. By Lemma 3.9,
w>0 on 2 and so by the maximum principle, see Ref. 9,
Theorem 3.5, w> 0 on {2 and hence &, + v <0 on £2. [ |

Proposition 5.3: If F is real analytic on an open interval
containing [0,1) then v is real analytic on R*

Proof: Since e* is real analytic on R? and 4, 4+ v <0 on
R? by Lemma 5.2, the proposition follows from the theory in
Ref. 10, Sec. 5.8. |

Remark 5.4: We have shown that if Fis C  then the
solution v is C = and it follows that the fields 4, and ¢ ¢ are
C ~. In this case we may quote Proposition A 1.1 of Taubes,’
the proof of which does not rely on the particular form of the
function F, and which shows that the zeros of |¢ | are dis-
crete. A proof is also to be found in Ref. 11, p. 76. This

1563 J. Math. Phys., Vol. 24, No. 1, January 1983

implies that when Fis C * we have found all solutions to the
first-order equations (1.4) and (1.5). Thus,

Proposition 5.5: Let A, and ¢ © be, respectively, C ~
gauge and Higgs fields on R? which satisfy Egs. (1.4) and
(1.5). Then {xR*:|¢ |(x) = 0} is discrete.
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For a restricted class of SU(2) gauge-field structures we show that only integral topological
charges can occur, without making any assumptions about the asymptotic behavior of the fields

PACS numbers: 11.10.Np

1. INTRODUCTION

It is generally believed that in SU{2) gauge theories an
arbitrary finite-action gauge-field structure must have inte-
gral topological charge. However; the usual “proof” of this'
depends on properties of S %, the one-point compactification
of R *. It assumes that all gauge-field structures can be ex-
tended from R * to §*. This Compactification Assumption
has been attacked by Crewther,? who has argued that nonin-
tegral topological charges are important.

Recently* I showed that a proposed counterexample to
compactification,* with topological charge 3, was not valid.
Reference 3 also quoted some resuits to the effect that all
solutions in a wide class of gauge-field structures were in-
stantons, hence compactifiable.

Here I will extend and prove those results. They rein-
force our belief in the integral nature of topological charge,
and perhaps provide the first stages of a full proof.

In Sec. 2 we define the class C,, of gauge-field struc-
tures to be considered. It consists of self-dual fields 4 |, de-
fined by a familiar ansatz

A, ~Inp,
on patches P;. All the p, are taken to be functions of just two
variables (r and ¢ ). This simplification allows us to prove
some important crossing properties (Sec. 3). We use these in
Sec. 4 to show that any p,(P;) can be extended to all R * apart
from isolated removable singularities (instantons). In Sec. 5
we find the complete solution for the class C, ,. Section 6
contains some comments.

2. DEFINITION OF C,,

We consider the class (=C,,) of self-dual gauge-field
structures (or connections) defined by

i a
A w = O-,u\'a_x‘—ln p[(r![) (1)

on regions P;, where U.P, = R * and

Xo=1t r=xi+xi+x3,
[a,j = (1/4i)[o;,0;]

— 1
Og = 30, .

g,

Hv

2)

On P,nP, #4¢ the gauge fields must be related by a gauge
transformation

al present address: DAMTP, Univ. of Liverpool, P.O. Box 147, Liverpool,
United Kingdom.
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4, =04/020"4+i3,00", (3)
where
N =exp {ia(r,t ) 57_'{] (4)
2r

for some function a(r,t).
Note that if p, = Re” then

3, Inp, =3, InR + i3, cRe (5)

implies that ¢ is a constant whose value does not affect 4 ;.
We can therefore take it to be zero without loss of generality,
making p, real and positive. Observe that p, cannot change
sign since that would imply a point with p, =0in P, at
which 4, would be singular, i.e., undefined.

3. CROSSING PROPERTIES

We prove the following.

Theorem 1: (i) For an arbitrary function 4 (r + it ) which
is analytic in P,nP;, if

rp; = Relch), (6)

rp; = Re(c*/h), (7)
(ceC) then Egs. (3) and (4) are satisfied with

alrt) =7+ 2 arg(ch ). (8)
(ii) Conversely, any nontrivial solution of Eqs. (1)-(4) can be
expressed as in Eqgs. (6)—(8) for some ceC and some analytic
(in P,nP;) function & (r + it ).

Proof: A little algebra shows that Eqgs. {1)—(4) are equiv-
alent to

(2—0: = %[ln(rp,v/rpj)], 9)
%‘:— = tan(%)g[ln(rp;'rpj)]’ (10)
% — — Zinirp,/p)) (1)
% tan( L2 [iop, 1)) 12

It is easily checked that Egs. (6)-(8) satisfy this set of equa-
tions, and also the self-duality equations
1 (98 & )

L 9 N, =0 (13)

rp,\(ar2 ot* rp)
(k = i, ). This proves part (i} of the theorem.

To prove part (ii) we need to find the most general solu-
tion of Egs. (9)—(13). The most general solution of Eq. (13)
with p, real is
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(k = i!j)’ (14)

where g, is arbitrary except that it must be once-differentia-
ble (hence analytic) to define 4 .

Equations (9)—{12) lead to two relations involving just p;
and p; (not a). Using Eq. (13) these reduce to just one:

2 2 .
(& + L) (’i)=o. (15)
ar ar* p,
The general solution of Eq. (15) with p, real and positive
(k=1,j)is
rp./rp; = |k (r +it)|?
with & an arbitrary analytic function. Thus we have

o =Regq,(r+it)

Reg;(r + it) =Reg;(r + it)|h (r + it)|% (16)
Next we will solve Eq. (16). If A is a constant then
A, =4,

1.e., the solution is trivial. Otherwise we can substitute Eq.
(16} into Eq. (13) {twice) to get

Relg, +g-2-] =0, (17
L h
Re{qg, —g/—; =0. (18)
h r
The general analytic solution of
Regir+it)=0

in a nonempty open region is

glr + it} = imaginary constant.
Then Egs. {17} and {18) imply

g, =d/h+ia,

q;, =ch +ib,

(19a)
(19b)
where a, b (€Re) and ¢, d (€C) are constants. Equation (16)
implies

c=d*
so that we have derived Egs. (6) and (7). All we need to do

now is to show that Eq. (8) follows. Equations (9) and (10)
imply

a 0 d
tan = 2 {inip, /7] /E[Invp,»rpjn, (20

which after a little manipulation gives

a Re(ch T
tan(;) T Imich ; - tan(? + argich ))
implying
a =7 + 2 arg(ch ), (21)
which is Eq. (8). This proves the theorem. ]

4. EXTENSION OF P,

Theorem 2: For any solution in C, , any of the p,(r, )’s
can be extended to all R * apart from isolated points on the ¢
axis. In the neighborhood of an excluded point—at
(r,t) = (0,8 )—we have

a

T T

(@>0). (22)
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Proof: Consider any two patches P; and P; with nonzero
intersection. On P,;UP; we have two possibilities:
W4, =47.
In this case
pi =p; Xc¢
on P,uUP; with c a positive constant. Then p, and p; can be
extended to all P,nP; by taking

pi=p; Xc
everywhere.
(i) 4], #A4,.
Here part (i) of Theorem 1 applies. On P,n P, thereisan
analytic function A (r + it ) such that
rp; = Re{ch), (23)
rp; = Relc*/h).
Now c*/h is analytic throughout P; [cf. Eq. (14)]. It can

therefore be used to define 2 (hence p;) throughout P;, except
for poles where

c*/h=0.
The zeroes of a nonconstant analytic function are necessarily
isolated, so the poles of p; in P; must also be isolated {in the
complex r + it planej.

Suppose that p; has an N th order pole at
r+it=a+ if, and
a+1ib

Ch~(r+it—a—iB)N. 24
Consider A <1 and take

r—a=2~2acoséb, {25a)

t—pP=Asiné. (25b)

Now €& can take all values in — 7—7 if @ #0, and all values
in —7/2— +7/2ifa=0. Also

arg(ch) = argla + ib) — N6
must only take values in — 7/2— + /2, to keep p, posi-
tive. This implies

N=+1, a=0, argla +ib)=0,
i
a>0, b=0.
In the neighborhood of the singularity, therefore,

a

che———,
r+it—pB)

which implies
P
" P+ (—B)

as asserted. Note that points on the 7 axis are unique on the
(r,t ) half-plane, in corresponding to points on R *.

Putting (i) and (ii) together we see that p, ( p,) can be
extended to all P,uP;, and hence to all R %, apart from point
singularities of the type given by Eq. (22). This proves the
theorem. n

A simple corollary of Theorem 2 is that at most two
patches suffice to define any element of C, . One patch will be
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defined except at isolated points in terms of a function
h (r + it); the other will be defined in terms of 2 ~! and will
include all those points.

5. A GENERAL SOLUTION FOR C,,

Theorem 3: In the class C,, only integral topological
charge is possible.

Proof: For any element of C,, Theorem 2 allows us to
define a gauge field 4 |, with only isolated singularities. Uh-
lenbeck® has showmthat any such field can be extended from
R *to S*. This ensures integral topological charges.' ]

Theorem 3 can also be proven as a simple corollary to

Theorem 4: For any element of C,, any p,{r, } in that
element takes the form
a;

plrt)=a+ ¥ (26)

P (- B
with a>0, a;, >0, B, #B,{i#)).

Proof: Consider p, (r,t ) where P, has been enlarged to all
R # apart from singularities on the ¢ axis. Then

pi=—Reglr +it), 27)
¥

where g(r + it ) is analytic in the »> 0 half-plane. Also
Reg>0 forr>0, (28)
Reg=0 forr=0,

except at singularities. We can use the reflection principle to
extend ¢ to a meromorphic function on the entire » + it com-
plex plane, using

glr +it)=—[g( — r+it)]* (29)
Note that ¢ is analytic for r <0, and
Reg<0 forr<0. (30

We have already found the possible singularities g can have
{Theorem 2). The most general analytic function satisfying
Egs. (30) and (32) is

g=alr+it)+ib
To see this take

glr + iz) = q(r + iz) — q(0), (32)
which also obeys Eqs. (28) and (30) since g(0) is pure imagi-
nary. Consider the change in argument of g around a circle of
radius R centered at the origin. This is, 27 X number of ze-

roes of ¢ in the circle. The latter number is at least one, and
must be exactly one VR to satisfy Egs. (28) and (30). Defining

glz)=q/z (33)
{z = r + it)wesee that g is analyticin C, and has no zeroes. If
giz) were a polynomial this would imply that g was a positive

real constant, proving Eq. (31). To complete the proof we
must show that g cannot be transcendental.® If it were, then

(a,be Re,a > 0). (31)
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the above arguments applied to

g—qg+az (a>0)
would show that g cannot equal — « for all a reat and posi-
tive. This contradicts Weierstrass’ theorem, so g cannot be
transcendental.

Combining Eq. (31) with Theorem 2 we find the most
general solution

i) + B+ Y —— 34)
q=alr+iz)+ 1B + - .
,-er—}—l(t—ﬂ,) (
This proves the theorem. Note that
= N(a#0) }
V(p)=N—1(a=O) , {35)

proving Theorem 3. For an arbitrary choice of the ¢ axis, Eq.
(34) recovers the full set of solutions of Jackiw ez al.”

6. COMMENT

Without assuming compactification, we have proved
that in the class of gauge-field structures C,, the topological
charge must be integral. A general proof would doubtless
require more sophisticated techniques. Nevertheless, our
central concept could be the basis of such a proof. It is the use
of analytic techniques to show that only isolated singulari-
ties can occur.

In conclusion, we note that the compactifiable nature of
the solutions in C, , follows directly from the finiteness of the
action. This implies that there are only finitely many singu-
larities. On any patch P; these must lie in a bounded interval
(< R ) beyond which everything is smooth, and can be ex-
tended to the point at infinity. With infinite action we could
have an infinite string of singularities, and such a solution
would not be compactifiable.
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Typical and atypical representations of SU(m/n) are worked out, in an explicit and pedestrian

way. Examples are given.
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1. INTRODUCTION

Lie superalgebras (Refs. 1,2) are progressively becom-
ing very used in physics: as algebras for super unification
(Ref. 3), in nuclear physics (Ref. 4) and in supergravity (Ref.
5).

The irreducible representations of Lie superalgebras
have already been studied to a certain extent (Refs. 6 and 7),
but we feel that there is a need for some clarification in this
problem. We hope to do it in this paper where we study the
typical and atypical representations of SU(m/n).

Atypical representations are the ones which have been
least studied, though they are obviously of importance: all
the adjoint representations of SU(m/n) for mn > 2 are atypi-
cal; and they could be of importance also in physics.

In this work we rely heavily on the techniques of Ref. 6,
perhaps the most powerful one. We have a pedestrian ap-
proach which we feel hopefully is pedagogical, simple, and
operational.

In Sec. 2 we present the properties of SU(m/n) directly
relevant to us. In Sec. 3 we explain simply how a typical
representation is built. In Sec. 4 we study the atypical case;
and in Sec. 5 we give several examples of SU(1/2), SU(2/2),
SU(1/8), and SU(2/3). In this paper we state only the results
and properties of unitary superalgebra relevant for us. For
basic definitions and additional information we refer the
reader to Refs. 1, 2, and 6.

2. SU(m/m)=A(m — 1/n — 1)

The bosonic or even part G5 of the Lie superalgebra
SU{m/n) is G5 = SU(m) ® SU(n) & U(1). [When m = n, the
even part of 4 (m — 1/m — 1}is G5 = SU(m) ® SU(n), but in
fact 4 (m — 1/m — 1)z£SU(m/m), cf. ultra.]

The fermionic or odd part of SU(m/n) is made of two
parts G_, and G, corresponding, respectively, to the irredu-
cible representations (m, 7) and (/m, n) of SU(m) ® SU(n).

The algebra SU(m/n) is then of dimension
(m*> — 1)+ (n* = 1)+ 1 4+ 2mn = (m + n)* — 1, and its
rankism +n — 1. SU(m/n) = G_, ® G5 ® G, satisfies

[Gs, Go] = Gs,

[G6’ Gil ]g.Gi | 84

{G]’ le}_C_G(_)’

{Gly Gl} = {G_ly G_|} = 09

and can be decomposed into:

*Supported in part by the Swiss National Science Foundation.
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{a) A Cartan subalgebra {4, ], whose dimension is
m 4+ n — 1. (In the case m = n, there is a linear combination
of these 2m — 1 elements which gives an element J in the
center of the algebra, so SU(m/n) is not simple and
A (m — 1/m — 1)is defined as the coset of the original super-
algebra by this ideal:

S {mim)

kI’
We take the basis in which the simple roots are eigenvectors
of the A, as we will see later.

(b) The other generators are divided into positive/nega-
tive, even/odd roots:

—the positive/negative even rootsa,*, ¢+ correspond
to the positive/negative roots of SU(m), SU(n), respectively.

—the positive/negative odd roots are called b | * and
belong, respectively, to (m/#) and (/m/n) of SU(m) ® SU(n).
One can define a system of simple roots in such a way that
there is one simple positive odd root 8 *, with m — 1 and
n — 1 simple positive even roots of SU(m) and SU(n), a ",
vy and ¥,5 s ¥d o n -, Tespectively. (In the same
way one can define simple negative roots.)

It is worth emphasizing that in terms of representation
of SU(m) ® SU(n), B ~ corresponds to the highest weight of
(m, n) and B * to minus that vector in the root space. [ *
belongs to (1, 1) but is not the highest weight.]

In terms of these simple roots, the algebra looks like
(with the convention 8" =a,1; v, =a, ;)

Am—1/m—1)= keC.

la*, a7 1=6,h, ij=1-m—1; m+lem+n—1,

{af, ey }=hn

[at, a7 1= la", a,1=0, i#m,

(A, a* ] = ta;a*
where the g,; are the elements of the Cartan matrix associat-
ed to the algebra

Yij,

A={a;) = m—1
W
2 -1 0
m—1 ~1 2

—1 2 | —1 0

0} -1 2 -1
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A contains the same information as the following Dynkin

diagram: (a,,,, = Oimpliesa,,,, ., = + L;a,,,, , = — 1)
a, am Qi n—n
QO — 0.0 — ® — 0.0 -0
A Ve A e
m—1 n—1.

The a; characterize the highest weight A of a given represen-
tation. a,, corresponds to the odd simple root, and to the
zero in the diagonal of the Cartan matrix.

The Cartan subalgebra is defined in such a way to mea-
sure the projections of A along the simple positive roots ;!
giving the a,. (a;,€Z *u{0}, i#£m, a,,€C.)

Nonsimple roots are obtained by commutations be-
tween simple roots as in customary Lie algebra. These com-
mutations are made more perceptible with the notation:

Brt=bmt at

fem = afi ’ ajfm = %j
In the case of the odd negative roots it is worth while to be

precise:
[b7-, aii]':“si.kflb(lkil): 2.1)
(b7 v 1= —8,,.b7 . (2.2)
This leads to a natural ordering of the odd roots b | * accord-
ing to the values of the indices / (in decreasing order) andj (in
increasing order).

The following relations are also easy to verify and
useful:

0 if k>i+1 or <1,
. k<i—1 or I>i+ 1,
A bf~ ifk=i+1lor [=i-1,
— bk if k=1ior =i
(2.3)
0 if k=I=m or k<m, I>m,
[#,, b5~ ]1=4 &7 if k=m, | #m,
—bk if l=m, k #m,
(2.4)
[b;‘_, a,-*]: + 8, b, (2.5)
67, 7’1+]= ~ & iy
bre et y=h,+'S h= 3 6
i=k j=m+
{b;(+» b;(ri}z [a/k++l'"[ak+'7|r al -], k<k’,
= [a/\i+1"'[a/:71r a; ]], k>k’,
(2.7)

{bf+’ bf'7}= [7I+- 1"'[7’1'++1’ 7 ]]» I>1,
=y vl vo 11 1<0,(2.8)
k #k'

k + bk:’7 — 3 .
{5+, b5 -} Olfl#r

(2.9)

3. TYPICAL REPRESENTATIONS

In this section we describe the principle of construction
of irreducible representations of SU{m/n). (This section is
completely inspired from Kac, Ref. 6.)

{1) One chooses a highest weight A corresponding to a
set of @, appearing on the Dynkin diagram. A belong to the
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multiplet of SU(m) ® SU(n) characterized by the q,.,,; a,,
will characterize its “typicality.” In this section we will sup-
pose that a,, is a complex number or any number different
from the one appearing in the next section. The representa-
tion will be called typical, that means that all the possible
multiplets of SU(m) ® SU(n) which could appear will appear.

(2) By definition of the highest weight,

a A=y A=B"A=b;"A=0.

The representation is exhibited by repeated applications of
the negatives roots:

—the negative even roots ,~ and ; make us migrate
inside multiplets of SU(m) & SU(n)

—the odd roots b~ [which are in a (m, n) of SU(m)
® SU(n)] make us change the multiplet.

Since {6} , b}~ } =0 Vij,k,I onecanapplyonA at
most an antisymmetric combination of m X n odd roots. (We
will say that the representation has a “‘ground floor” and
m X n floors.)

The multiplicity of a typical representation is very easy
to compute; it is the multiplicity of A times 2" [the multi-
plicity associated with the antisymmetric combinations of
b} corresponds exactly to the binomial coefficients of
(1 + 1)""]. In other words, the multiplicity can be written:

a+-+a +j—i+1

dim V{A)=2"" —
1<i<j<m — 1 j—i+1
x ai""_}_a/.‘oj .
m+loij.omytn _]—'1+1

A few remarks are in order which will be useful in the next
section:

—The zeroth floor corresponds to the SU(m) ® SU(n)
irreducible representation of which A is the highest weight.
The first floor corresponds to the product A & (i, n); the
second floor to A ® [(m, n) ® (M, nj],; and so on---. So each
floor, from the first, corresponds in general to a reducible
representation of SU({m) ® SU(n), which one has to disentan-
gle; there are then “highest-highest weights” at each floor
and sometimes also “lower-highest weights” for the other
representations.

—In terms of Young diagrams, the antisymmetrized
product of k times (2, n) is the direct sum of all possible pairs
of Young diagrams made of k boxes with a maximum of m
rows and »n columns with respect to SU(n), and the contra-
gradient of it is transposed for SU(m).

Proposition 3.1: The highest weight of the reducible re-
presentations at each floor (referred to as highest weight) is
obtained by applying the negative odd roots 4|~ in their
*“natural order.”

Proof: A “‘naturally ordered” product of Hb i isby
i

definition such that it commutes with any positive even
roots. That means that in the product, at theright ofany b | -
thereiseithers|*' ~orb;, , orboth. Thenitis obvious that

al [[bi A =0
[N]

if A is a highest weight.
To extract the SU{m) ® SU(rn) representations hidden
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behind the highest-highest weight, one proceeds in the cus-
tomary way: the lower-highest weights correspond to suit-
able linear combinations of the different operators leading to
that weight; the orthogonal combinations corresponding to
members of bigger representations.

If V5 and V5 denote the “bosonic,” respectively, “fer-
mionic” part of the representation, then dim V5 = dim V5
and either V; or V7 is made of the elements of the even or odd
floors by the following property of the binomial coefficients:

20)-20)

Given the biggest reduced representation and any little
one, let A, be the number of times the even root &, has tobe
applied anywhere in the product of odd roots in order to pass
from the highest weight to the members of the linear combi-
nation of the lower-highest weight.

Let a, be the weight vector of the biggest representation
and a the one of the little; then A = (a;;)~ '(a, — a), where (@;
is the Cartan matrix of SU(m) ® SU(n). For SU(xn),

2 -1
-1 2 -1
-1 2 -1
(alj)z —1 . . ;
.2 1
-1 2
(aij)—l
n—1) (n—2) - 3 2 1
(n—2) 2
: 3
Tl 3 s
2 (n—2)
1 2 3 n—2) (n—1

4. ATYPICAL REPRESENTATIONS

A pathology associated with irreducible representa-
tions of superalgebras is the notion of atypicality: it corre-
sponds to the decoupling of some part of the representation
appearing in the previous section; this phenomenon is associ-
ated with some values of @,, characterizing the highest
weight A of the whole representation.

A. Decoupling of the “higher-highest weights”

We know from Proposition 3.1 that they correspond to
Ti-A=M17, I~ A, where the b/~ appear in
their natural order.

The decoupling of these ““higher-highest” weights takes
place when the operator 7§ ~ is not invertible or when
Ti*T{~A =Pih)A)=0.

Proposition 4.1:

Ty T |4)

= 1I

m— K<i<m

j m—1
(b $ o S am i)

me<jsl+m

and (i, j) ordered.
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Proof: There are two ways to obtain that result:
(a) by recursion on k and / using 75 ~ |A )
=bm - TE-1-1A), TS |A=5b7"|A) and using

m+ 1
Eq. (2.6):
m—1
T?’*Tf~|A>=T5*‘*“+(hm+ S A
t=m-—k+1
m+41
- h,)Tt,k—”wA)
t=m+1
m—1
=(Af*‘+hm+ >y A
t=m—k+1
m+ 1
-5 h,)Tl,k~"+T',H'—|A>.
t=m+ 1
4.1)
Using Eqs. (2.4) and (2.5),
Ak
m—1
=N(im) —N{Gm+ S  (Nti—1) =N
t=m—k —
m+
- > (N@j+1)—=N@j) (4.2)
t=m-+ 1

N (a, b)is the number of times that a is equal to b in the

product T;~ =1I1b;” . Inthiscase,d j =k — [/ =2m —i-
—jli =m — k and j = m + [ are the natural values of the
indices).

(b) Another way to get formula is to make a recursion on
kand!inSU(k /I), noticing that when k = m,/ = n, it corre-
sponds exactly to the formula obtained by Kac (Ref. 6).
These conditions of atypicality are expressed as

i m—1

a, = 2 a,— Y a —2m+i+j

t=m+ 1 t=1

m — k<i<msj<m + 1. (4.3)

B. The decoupling of the highest-highest weight on a
floor does not mean that the whole floor decouples

To see how this happens we need three more formulae:
Proposition 4.2: Let A ¥ = T~ A be any highest
weight; then a;A # has at least the same decoupling condi-

tions as A .
Proof: Let us take m — k<i<m. This comes from:
T ata T A =(h, +d¥)PKh)A where using (2.3)

di= Y (Nti—1) = Ni).
m— k<t<m

So the zeroes of P }(h;) remain decoupling conditions.

This proposition implies essentially that the members
of a SU(rm) ® SU(n) irreducible multiplet have the same de-
coupling conditions as their highest weight.

Proposition 4.3: Af=T;~ A and X ¥ = T*a.A have
not necessarily the same decoupling conditions.

Proof:

a Ti+Ti a A =Pf"(hj —a;hA, (4.4)

but
T arTi a A =P}‘(hj)h,.A, (4.5)

and
atTita Tt A =h,.Pf{hj)A. (4.6)
Q.E.D.
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Equation (4.4) implies others conditions of decoupling for
some values of /.

Proposition 4.4: 1f A ¥ = T*~ A is a “highest-highest
weight,” there are only two meaningful ways to insert an
evenroota, ;itiseithera, Tf~A or T~ a,” A.

Proof: From Propositions 4.2 and 4.3 we know that they
lead to inequivalent decoupling conditions.

Ifoneinsertsa,” anywhereinside 75~ =T11b i~ ,using
Eq. (2.1) one can let it migrate to either end of the product. If
we let it towards the right end (where lie the lower in order
b; ), because (b}~ )’ = 0 and because A | is a highest-high-
est weight, that will not introduce any new terms.

C. Consequences on the atypical representations

From Proposition 4.2 we know that an atypical repre-
sentation is made of irreducible multiplets of SU(m) ® SU(n).

In the case where the highest weight A of the superre-
presentation is a singlet of SU(m) ® SU(n), Propositions 4.3
and 4.4 are irrelevant. But in the case where A is not a singlet
of SU(m) ® SU(n), lower-highest weight of smaller represen-
tations of SU(m} ® SU(n) are hidden behind the representa-
tion of the highest-highest weight.

From Proposition 4.3 we know that they have not the
same decoupling conditions as the highest-highest weights.
The corresponding conditions can be deduced from Eq. (4.4)
and Eq. (4.3). From Proposition 4.4 we know that Eq. (4.4} is
the only new set of conditions to consider. It is important to
realize that these new conditions are not new typicality
conditions!

They really are decoupling conditions if they coincide
with the conditions given by Eq. {4.3). This occurs because of
Eq. (4.5) which tells us that it is also possible from T} ~a,” A
to come back to A by applying T5*a,” on T% ~a,” A.

Equation (4.6) means that there is no reduction in the
number of decoupling conditions for members of the multi-
plet of SU(m) ® SU(n) whose highest weight is the highest-
highest weight A ;. In the next section we see examples on
how things work.

5. SOME EXAMPLES
a, a,

Example 1: SU(1/2): ® o

The two negative odd roots are f ~ =a; and 8,
=[B ", a; ], @, being the simple negative root associated
with the bosonic subalgebra SU(2). The Cartan subalgebra is
madeofs, = {f *,8 " }and h, = [a,", a,];theCartan ma-
trix is (°_ | ;) and its elements a;; appear in: [4,, a*]
= ta,07, =12

A representation is characterized by the highest weight
A whose behavior under SU(2) is given by a,. The corre-
sponding typical representation can be written as
A{1 4 2 + 1) in terms of SU(2}; in particular,

—If A is a singlet {a, = 0) we obtain a (1 + 2 + 1).

—If A is a doublet (a, = 1) we have
AL +24 1= (2, + (1 +3) +2,)
The highest weight of the 3 corresponds to 5 ~ A which is
decoupledby 8 +*8 A =hA=a,A=0,ie,ifa, =0.

The highest weight of the 2, corresponds to 3,78 A,
and using Egs. (2.6) and (2.3} one gets B ¥ B ;" B BA
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= (h, — h, — 1)h,A; the decoupling conditions are a, =0
and a, + 1, i.e,, 2 in the present case. These are exactly the
decoupling conditions we would get from (4.3).

Because 8 ~a, A does not decouple whena, =0,
a;" B T Ba,A = (h, — 1)h,A [which is equivalent to Proposi-
tion {4.3)], we see that the 1 does not decouple fora, =0 or
a, = 2 so the representation is, if

2 4+ 1 of SU(2),
a, =2 24143 of SU(2),
a,#0,2 24+(14+3)+2
(it corresponds to the only case where the adjoint is a typical

representation).
Example 2: SU(2/2)

a, a, a,

a, =0

o—g®-—o0
The bosonic subalgebra is SU{2) & SU(2) @ U{1). [The
bosonic subalgebra of A(1,1) is SU(2) ® SU(2) only, but our
method applies for SU(m/n) Ym, n;notfor A(m — 1,n — 1}
when m = n.]
The Cartan matrix is

2 -1 0
—1 0 1
0 -1 2

Leta{", aif = y;- denote the simple roots, respectively, of
the two SU(2)’s. The simple negative root 8 ~ is b3~ in the
notation of Sec. 2; other negative roots are
by~ =[p3, ay b1~ = [63~, ar |and
by =[by", a; ]=[bi", a ]

A representation of SU(2/2) with highest weight A in
terms of representation SU(2) ® SU(2) is part or totality of

ALLD +(2,2)+ 13,1 +(1,3)) +1(2,2) + (L],

If A is not a singlet of SU(2) ® SU(2), in general each floor will
correspond to a reducible representation. The higher-high-
est weight will correspond to
AV =b1"A, for the first floor
(where we have (2,2)],
AP =bl"b17 A A? associated with (1,3),
AY=b3"b3"A for the second floor

A® associated with (3,1),
for the third floor,

for the fourth floor,

A¥=b1"bl"b3 A
AP =b1"b3"bl b3 A

leading to the decoupling conditions

AMNa, =0,

AMa, =0, a,= —fa, + 1),

A%a, =0, ay=a, + 1,

A¥a, =0, a,= — (g, + 1) or a,= +a;+1,
A®a, =0, —(a,+ 1), (az+ 1), a, —a,,

which are exactly those predicted by Eq. (4.3).

Suppose A is (1,2) of SU(2) ® SU(2), namely that the re-
presentation corresponded to a:

0 a 1

0 & 0
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We will just look at what would happen to the first
floor. It will be reducible and made of

(1,2)X(2,2) = (2,1) + (2,3).

b2~ A corresponds to the highest weight of the (2,3).

X1 =% bi A andy,=b3y; A areindependent;the(2,1)
corresponds to the linear combination (y; — iy,); and the
orthogonal combination is a member of the (2,3).

There are two ways from y, and y, to get back to the
highest weight A of the representations: by applying y;" b3+
and b3 " y,", all the combinations lead to a, = 0 as decou-
pling condition (for example 3% y;" ;b %~ A ) except for
one, ;' b3 " b3~ y; A, which leads to a, = 1. That means
that when a, = 0 the (2,1) is not decoupled; it is certainly
coupled as well when a, %0 so it is always part of the irredu-
cible representation.

Let us define I, such that y, — iy, = I,A. If we call
“norm” of the (2,1) the expression I ;~ I,A, when a, = 0, this
norm is zero. (This is connected with the decoupling of part
of the next floor for that value of a,.)

It certainly does not mean that the (2,1) is decoupled,
though all the states which decouple have a zero “norm.”
(This “norm” is by no means a norm in fact; in particular it is
not necessarily positive, and could be complex.)

Example 3. SU(1/8).

In Ref. 8 an attempt has been made toward superunifi-
cation by studying the spectrum of particles for O(8) — ex-
tended supergravity. In fact, these states fall into the repre-
sentation of SU(1/8); here we study the relevant
representation of SU(1/8) and see whether the “trace condi-
tion” used in Ref. 8 to decouple some of the states from the
physical spectrum correspond to use of an atypical represen-
tation; we find that it is not so. The bosonic subgroup is
SU(8) ® U(1). We are interested in studying the representa-
tion where the highest weight is in a 8, corresponding to

a, 1

® —0—0__ 00— 0020

corresponding typical representations (according to Sec. 3)
will correspond to a 2° X 8 dimensional supermultiplet:

8 X(14+28+56+70+56+28+8+1)
=8+ (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56)
+ (378 + 70) + (168 + 56) + (36 + 28) + 8.
From Proposition 3.1,
Agz=b Ag,
Ane =b3 b Az,

A37x=b5~b4_bsvb2—b1‘A§»
A168=b6\b5—b4—b3ﬁb2_b]‘A§’
Ay =b7bgbsb bbby

Ag=bg b b bbb,
whereb,” =[b,~,, ¥ ]

The decoupling of these highest-highest weight is given
[Eq. (4.3)] by the zeroes of

k ,
[1(n— Sh+1-i)a,
=1

t=2

{
S
o

I
LS
ool

k = 1 corresponding to A;, k = 2to A,,,, etc., and the con-
ditions for the decoupling of the corresponding states are

as=0,1,2,3,4,5,6,8.

The conditions of decoupling of the lower-highest weight
can be deduced by remarking

AV=71Y5 Ya Vs Ve V7 Vs Ao
Ag=V3 Y5 Vs Yo V7 Vs Ao
A =Y4 Vs Ve Y1 V5 Aszor

Ase =7Vs Vo V7 Vs Ason

Ao =7%e6 V7 Vs Az

Ase =77 Vs Aless

The odd negative roots b ;= form an 8 of SU(8); therefore the Ay =75 Agg-
]
It‘ is a bit messy but straightforward to find the following result:
a, irreducible representation

typical

8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + (168 + 56) + (26 + 28) + 8

=8 | 84 (63 + 1)+ (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + (168 + 56) + (36 + 28)
=6 | 84 (63+ 1)+ (216 + 8) + (420 + 28) + (504 + 56} + (378 -+ 70) + (168 + 56) + 28

=5 | 84 (63 + 1)+ (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + 56

=4 | B+ (63+ 1) + (216 + 8) + (420 + 28) + (504 + 56} + 70

=3 | 84 (634 1)+ (216 + 8) + (420 + 28) + 56
=2 | 84+ (63+ 1)+ (216 + 8) + 28

=1 | 8+(63+1)+8 —adjoint of SU(1/8)
=0 | 8+1

Notice in particular that one does not get the trace condition
of Ref. 8.

Notice also that at each floor, in general the conditions
of decoupling of the lower-highest weight are different from
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I
those of the highest-highest weight.

Example 4: SU(2/3).

Finally we look at SU(2/3) with highest weight taken in
a (2, 3); namely the following representation:
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1 a, 1
O—@—0—0
The corresponding typical representation would be
2,3)x{(L1) +(2,3) + [(1,6) + (3.3)] + [(2,8) + (4,1)]
+ [(L6) + (3.3)] +(2,3) +(1,1)}
=23)+ (143, 1+8)+ [(2, 3+15)
+2+4 6+ +[(1+3 T3+6+3
+(5+3, 3]+ [(2, TO+8) + (442, 1+8)]
+ (143, 64+3)+(2,3)
=(2.3)+ (LD + 3,1 + (L8) + (3.8)] + [(2,3)

+ +(2y15)+"]
(We underlined the atypical adjoint representation)
1 0 01t

O—@—0—0

The odd roots are

bz" Jlk [b ’ al_ ]s j=2y3’41
bg_ [ 3 7/3 ’ b:t_ = [b g—’ ’V4ﬁ ], l= 1,2.
|
The other conditions of decoupling are obtained using
Al =a7y; 7’4/1 8> AL =yyi Als,
AT =yi v g, A =arAY,
Al—alAg, Agzal—y;Ag’
5 Ag =7/4_A2y
Af=ai A3, AL =y7vs AL,
Af=vivi Ak, Aj=a A},
A% =a; v; v, As,

Since it is a bit tedious to extract all the conditions of typica-
lity, we will do one example in detail, the (1, 16} of the third
floor. Its highest weight A | is hidden behind A % From
Ay =b, b3 b}~ A% oneextracts the decoupling condi-
tion from A,(h, + h, + 1){h, — Ay — 1)A 2 which is equiv-
alent to the previous formula (5.1). To get to A ! we have to
plug ;" and ¥~ anywhere in the product (5.2): there are 4
inequivalent configurations:

Afl; =bi‘b§‘b§‘af7’(/1§,
B =ax‘b§_b§‘b§“?’i/1§:
Co=viby b3 bl v AL,

The highest-highest weights are

Ist floor: A;=0b3"A%,

2nd floor: Afs =b,7"b3 A}, At =b1p2"A

3rd floor: A& =b) b3 b2 A%,
=bi b3 b} A%,

A =bi by bi b A},

s=by b6i b3 b} A}
S5th floor: A =b} bl b2 b2 b2 A2,
6th floor: A3 =b, b7 b7 b2 b2 b1 A2

wing

4th floor:

If a highest-highest weight corresponds to
(Ikeic2ejib i) A %, the corresponding conditions of decou-
pling are [Eq. {4.1)]

(h ~ Sh+3h +4_1_)
A1<,2\/gl

(5.1)

=3 t=1

The case of A § for example gives a, =0, — 2,1,3.

Al =a; A
A(3>=7/4*A'13'§‘,

A(1> =al‘7/4_A$_5’
A% =7’3_7’4_Ai"5;
A} =a; Y5 ¥ A,

A; =al——7/4_A %y
Ag =vy5 A %’
A =a A

To apply the results of the previous sections we will
consider instead the equivalent four states obtained by shift-
inga; ¥ to the left:

Eg=b,7bi"bi"A},

Fi=b1"b1"b3"A%,

Gi¢=b"b)"bi A}

From Proposition (4.2) we see that the decoupling conditions
of D are the same as A {5 [Eq. (5.3)],i.e.,a, =2, 0, 2.

It is easy to find [cf. Egs. (4.4) and (4.5)] that the corre-

sponding conditions for

Ela,= —202,
Di=a y;b, b2 b2 Al Flia—= — 20,
4, B, C, D span a four-dimensional space in which lies one Gl g = —201
member of (3, 15), (3, 6), (1, 115), (1, 6). 6+ %27 rh
|

So,

a,= decouple remain

-20 (3, 15) + (1, 15) + (1, 6) + (3, 6) nothing

1 nothing (3, 6) + (1, 6) + (1, 15) + (3, 15)

(3, 15) + (3, 6) (1, 15) + (1, 6)
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The decoupling condition a, = 0 is compatible with the ad-
joint representation and with the fundamental
representation

1 000

o0—@®——0—0

which is the underlined part of

20X {(1,1) +(2,3) + [(1,6) + (3,3)] + [(2,8) + -] + -}
=(2,1) + (1,3) + (3,3) + (2,6) + (4,3) + ...

6. REMARKS AND CONCLUSION

In this paper we give a recipe to build explicitly typical
and atypical representations of a superalgebra SU(m/n).

A typical representation is naturally connected to the
following expansion in terms of Grassman variables ¢ |
wherei=1,..m,j=1,..,n.

fixE) =3 S -E
k=1,..ni..0

I=1,..m Jreedy
is an SU(m) X SU(n) group index which characterizes the
SU(m) X SU(n) representation to which the highest weight A
of the superrepresentation belongs.

This expansion can (cf. Berezin, Ref. 7 and references
therein) be seen as an expansion on a supermanifold.

In the case when A is a singlet of SU(m) X SU(n), an
atypical representation corresponds to the case where only a
certain number of the £ ; are linearly dependent, which could
correspond to the manifestation of some constraints. That
means atypical representations would correspond to nontri-
vial supermanifolds.

In the case f“(x, £ ) is a tensor field on the supermanifold,
we saw that the decoupling scheme is more complicated and
this should reflect here.
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All this is related to the understanding of the represen-
tation of the supergroups which is still preliminary.

Local and global invariance under supergroups, when it
is understood, should be closely related to extended super-
gravity and super Yang-Mills, should provide for a more
systematic approach to them, and then allow a deeper under-
standing of these kind of theories.
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In this paper we establish the existence of a faithful matrix representation of finite type for every
connected simply connected graded Lie group. We also show the 1-1 correspondence between
finite-dimensional representations of a graded Lie algebra and the representations of finite type of
the corresponding connected simply connected graded Lie group.

PACS numbers: 11.30.Pb, 02.20.Qs, 02.40. — k

I. INTRODUCTION

Recently, Kostant' has given a very elegant formula-
tion of the theory of graded Lie groups. Mathematically the
formulation seems to be more attractive than the one given
by Kac and Berezin,” although few physical applications of
Kostant’s formulation have been made. In view of the quite
detailed knowledge we have regarding the representation
theory of Kac—Berezin graded Lie groups,” it would be nec-
essary for us to study the representation theory of the Kos-
tant graded Lie groups so as to make the similarities between
the two formulations more transparent. Our results in this
direction can be summarized by

Theorem 1: There exists a faithful matrix representa-
tion of finite type for every connected simply connected (csc)
graded Lie group.

Theorem 2: The finite type representations of a csc
graded Lie group are in 1-1 correspondence with the finite-
dimensional representations of the corresponding graded
Lie algebras.

In Sec. 11, we give a brief resume of Kostant’s formula-
tion, while in Sec. III, we prove the above theorems.

Il. RESUME OF THE KOSTANT THEORY'

Letg =g, + g, bea Z, graded Lie algebra over K = R
or C. Let G be the unique csc Lie group with Lie algebra g,,.

Definition 1*: The K-group ring of G, K (G ), is the free
abelian group generated by elements of the form (, g), rek,
g<G. Explicitly, K (G ) is an algebra over K, with the
properties

(r, 8) + (r 8) = (r, + 12 8

Hri, g)=I(r, glr=rri, gl

(ri, 8){rs 8') = (rir2, 88), 1 1K, g.8'€C. (1)
In the sequel, we denote the element (r, g) by 7g.

Let U (g) be the universal enveloping algebra over g, i.e.

U(g) = T (g)/Jwhere T (g)isthetensoralgebraoverg,andJ/is
the two-sided ideal of 7' (g) defined by elements of the form

XY~ (—1)*I"YyeX — [X,Y], X Yeg, (2)
where, e.g., |X | = Z,degreeof X. Note, of course, that U (g)is
bigraded w.r.t. Z, ® Z. Both K (G ) and U (g) are in fact Hopf
algebras. We recollect

Definition 2°: A Hopf algebra over K is a triple (H, 4,
1) where H is a graded algebra over K, A: H—H X H (the
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coproduct) and 1, : H—K (the counit) are homomorphisms
of graded K algebras such that the diagram

Loty HXK
A
HSH ><H< ;/H 3)
e xTn K xH
commutes.

The map 4 can be explicitly given for K (G')and U (g): if
geK (G), then 4 (g) = g ® g while if Xeg,
AX)=1®X+ X1, 4 being defined over the rest of U (g)
by the fact that 4 is an algebra homomorphism.

Finally, let ad: g, X g—g, (X, Y )X, Y] be adjoint map-
ping restricted to g,. We know that ad exponentiates to give a
unique map m: G X g—g such that the diagram

ad

gXg — 8
exp X 1,1 e 4)
GXg — g

commutes, where exp: g,~—G is the usual exponential map.

Definition 3: The csc graded Lie group E (G, g) with
graded Lie algebra g is defined to be

E(G g =K(G)#Ulg) (5)
where #, the smash product, is taken w.r.t. 7. Explicitly,

E (G, g} is a Hopf algebra generated by elements of the form
(g, X ), geG, Xeg with the properties

(i) (& X)g,Y)=(gg, X-mlg, ¥))

(i) A (g, X)=(4g, 4X), g g€G, X, Yeg.
Ifgis trivially graded (g = g,) than E (G, g) can be shown tobe
isomorphic to the set of all distributions on C *(G ) with fin-
ite support. Kostant has shown that if g is nontrivially grad-
ed, then a similar interpretation can be given in terms of
distributions with finite support on a certain sheaf of com-
mutative graded K algebras.

(6)

Hl. PROOFS OF THE THEOREMS

Let E (G, g) be a csc graded Lie group.

Definition 4: A representation of E (G, g)in E{G ', g')isa
map 3: E (G, g)—E (G ', g') which preserves the Hopf algebra
structure.

Definition 5: A representation 3: E(G, g|—E (G, g'jis
said to be of finite type if g’ is finite dimensional (as a vector
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space over K ).

Theorem 3: There exists a faithful matrix representa-
tion of finite type for £ (G, g).

Proof: By the generalized Ado Theorem,” we have the
existence of an isomorphism

o:g—g, {7)
where g’ is a finite-dimensional matrix graded Lie algebra,
such that o, = o], is an isomorphism o, g;,—8;. We know
that o, exponentiates to define an isomorphism exp o,
G—G', where G, G’ are the csc Lie groups with Lie algebras
2., g Further exp o, extends to a unique isomorphism

exp 0, K (G)—-K(G') (8)

of Hopf algebras.
Also, by the universality of U(g), o defines an isomor-
phism U (0): U (g)— U (g') of Hopf algebras. Consider the map

Z=(exp o, X U(0)): K(G)XU(gl-K(G')XU(g). ()

We now show that X is in fact an isomorphism 2: £ (G, g
—E(G’,g')of Hopf algebras. It is clear from the above that 3
preserves the coproduct and the counit in K (G ) X U (g). Itis
therefore sufficient to prove that 2 commutes with 7. Con-
sider therefore the following diagram:

v ad .
8 Xg - £

exp X1 exp X1 1 1
\ T
G Xxg g
AN
Glxgl 77 g;

(10)
The outer diagram and all the subdiagrams except the sub-
diagram (1) commute, hence the diagram (1):

K

GXg — g
eXp oy Xo | l o (11)
G,Xg’ N g/

also commutes which shows that 2 commutes with 77. Hence
the theorem.
Lemma I: Let o: g—g' be a representation with
dim g’ < . Then o defines a unique representation
S EG,g—EG,g).

Proof: X is constructed as in the proof of Theorem 1, i.e.,
2 =exp oy, X U(0o). To prove that 2 commutes with 7, we
note that £ (G, g) and E (G’, g') can be assumed to be matrix
graded Lie groups. For such groups, we know that (g, X)
= gXg~'. Assume that g = exp Z, Zeg,. Then,
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g, X)= i_@ﬂ

n=0 n!

X.

Now,

SigX)ig ) =2, Xg¥g™)
= (exp o,lgg), olX )-olg¥e "))

g, g'€G, X, Yesa. (12)
Also
w n - Z
olg¥g Y= o'( Zoh_dn!ZL y) - z:*’o (ad U’;)!( ) oY)
= w(exp o(Z), o{X), (13)

where we have made use of the fact that E (G, g) is a matrix
graded Lie group in the second step. Now, if g = exp Z-g’,
g'€G, then we have,

olgYg ') =exp oy Z)olg' Yg'~Jexpl — ao(Z)). (14}
Hence, o(gYg ™ ') = (exp 0(8))- Y+(exp 0,(g ™ ') Vg€G. prov-
ing that > commutes with 7. Hence the lemma.

Lemma 2: Every representation 2: E (G, g)—E (G, g),
E (G, g), E(G’, g')csc graded Lie groups of finite type, defines
a unique representation o: g—g'.

Proof: Obviously o = 2’|, is a representation,
o:g—U(g). Thefact that Im o C g’ follows from the fact that
Ulo) =2 |, preserves the Z degree.

As an immediate consequence, we have

Theorem 4: There is a 1-1 correspondence between the
finite-dimensional representations of a graded Lie algebra
and the representations of finite type of the corresponding
csc graded Lie group.

Finally, let ¥ .¥ & be the category of finite-dimension-
al graded Lie algebras and let ¥ . & be the category of csc
graded Lie groups of finite type.

Let ¥ '0s: 9L o/ -9 .7 Y be defined by

K os(g) = E(G, g),
K os\o:g—g)=3"E(G,g—E(G',g), (15)
using the notation of Theorem 1. Then,

Corollary: 7% o5 is a covariant functor from ¥ .¥ o to
Y % . Further % +s is invertible, i.e., there exists a func-
tor ¥ os . 9L G >% . L o suchthat F os0K o5~
=1,,,and ¥ os ' F os=14,.,wherel, ., and
1, .., aretheidentity functorson ¥ .Y o/, ¥ .% %, respec-
tively.

We hope to report on more investigations in this direc-
tion in a future paper.
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A recent method of quantization is examined. A condition is found to isolate suitable Fock
representations. Using these representations and a generalized Klein transform the quantization
is compared with the normal quantization with U(m) symmetry. Finally the connection of this

work with the color superalgebras is shown.

PACS numbers: 12.35.Ht

1. INTRODUCTION

Generalized methods of quantization were first pro-
posed in 1953 by Green.! These schemes of quantization
were known as para-Fermi and para-Bose statistics and had
Fermi and Bose statistics, respectively, as special cases.

These quantizations remained somewhat of a curiosity
until 1964 when Greenberg? applied them to the recently
formulated quark model. He postulated that quarks were
actually parafermions of order 3 rather than fermions (which
are parafermions of order 1). This model allowed baryons to
be symmetric with respect to interchange of quarks—a prop-
erty which seemed to be required by experiment. This, in
fact, was the first introduction of color into a quark theory. It
was then shown®* that the Greenberg model is essentially
equivalent to the three-triplet color model. In other words,
by replacing fermions by parafermions of order 3 one is real-
ly introducing an SU(3) [to be strictly correct U(3)] symme-
try into the quark model. This symmetry is now known as
color.

Attempts to pursue this “algebraic” notion of color
further have run into difficulty with the ““cluster property.”>
Basically what this says is that the creation and annihilation
operators for quarks must always remain “confined” to the
same baryon or meson. In order to resolve this difficulty
Green in 1975 introduced a different generalized quantiza-
tion which satisfied the cluster-property. This is known as
modular quantization, the name modular deriving from the
“clustering” of creation and annihilation operators into
“modules.” The aim of this paper is to examine the relation-
ship between this new method of quantization and an ordi-
nary quantization with U(m) symmetry. This comparison
has already been carried out in some detail for para-Fermi
statistics by Driihl ez a/.*

We begin by reviewing briefly the basics of the represen-
tation theory for para-Fermi quantization. The basic rela-
tions satisfied by the creation and annihilation operators are

[a”"% [ar’aI]‘]— = 6mkalr
(L1)

[@ms[@rs2;] -]1- =0.

Solutions to these equations are given by the Green’s ansatz

P
g = 3 b, (1.2)

a=1
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where the b ' satisfy
[b:(a)’b(la)]+ = s
[661], =0,
(1.3)
[b,’:(“),b(,m]_=0, a#pB,

[6614]_ =0, a#p.

Greenberg’ showed that if one takes a Fock representation
of the Von Neumann algebra of the a, which satisfies

a,at|) =pdy|)
with (1.4)

a.])=0 V¥,
then all irreducible representations (up to unitary equiv-
alence) are given by the Fock representation of the Von Neu-
mann algebra of the b [through (1.2) naturally]. It should
be noted that there are possibilities for irreducible Fock re-
presentations not satisfying (1.4). These are the so-called res-
ervoir states of Govorkov.*® It would appear, however, that
these result from choosing a nonvacuum state in the repre-
sentation of the b {’s as a vacuum state for the a,’s.

We now move on to consider Modular quantization.® In
the original paper the relations for the creation and annihila-
tion operators are given with the aid of a ““color” superscript

a}r)a(ks) + a(ks‘ 1Ja}r+ N _ 0,

(1.5)
a}k(r)a(,fb + a(ks+ ”a}""* D §rs5jk,
The color superscript being defined with the aid of a unitary
operator ¥ which satisfies

u™ =1, m integral, (1.6)
and defines the color superscript through

al=u""adu". (1.7)
It is possible to obtain relations not involving the super-
scripts,

ay ay,-a, @ a4 a4, =0,

oyl

*
af a a; ~a; A T T PN P

’

=6y k. Qi Ay, Ay

a;ata, + a,ata; = 6;.a, + 8pa;, (1.8)

if we set a,=a\” for any r.
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The natural question to now ask is how the Fock repre-
sentations of the a, corresponds to those of the full af} alge-
bra? Denote by 7 '° the former algebra satisfying (1.8) and
by % the latter satisfying (1.5), then we have the following
theorem.

Theorem: If a Fock representation of .« satisfies
,a;ﬂ) = 5k,j.5k2j2 "'5k,,j,,|>y (1.9)

then it is unitarily equivalent to the subspace of the Fock

n<m, a,a; ---ak"a}:aj*n ~

representation of # generated by 4 (s fixed). a
We first prove the following
Lemma: if
¢ =ayat-ar|) r<m,
then
a,atd =06,9. 0

Proof. For r = m — 1 the result is immediate due to the
second equation of {1.8). For r « m — 1 consider firstlyj = k.
The third of (1.8) shows

ata,arp = aré

Slaare |I* =llars |I” = (4.a,ar). (1.10)
However, (1.9) means that ||a*@ ||* = 1 (providing |) is nor-
malized) and ||¢ ||* = 1 so (1.10} shows immediately that

a,at¢ =¢ asrequired.
For j#k we have

ara;a¥ + afaaf = af

lia,atd |I” + (@,atd.a.atd) = (da.ats)

=>a;a¥$ =0 asrequired.

Corollary: The lemma together with the second equa-
tion of (1.8) shows that any state in a Fock representation of
&/ can be written as a sum of terms such as

U=a}a}t--at|), sarbitrary. O

A fact that we will have cause to use later. Now the first and
second of (1.8) together with (1.9) show that for any term of
the above form which is nonzero there exists an operator
Ved s.t. VU|) = |), namely

V=a,a, -a,

which means that any A€/ has a Be« s.t. B4 |) = |). This
enables us to say that .«7|) is irreducible. In order to show
that 4 |) is irreducible it is necessary to carry out a linear
transformation on the color indices

m—1
bl =m=' % e~ %af),
B=1
where €” =1 (€ is the mth primitive root of unity). This
transformation will later be seen to be central to the modular
quantization. The b “ satisfy
b(,f"b(,m + 2 Flp (,ﬁ'b (]:z) =0,
b ;f'a)b lIﬁl + B~ ([B)b zlai = 5ﬁa6k1,
= 'b'\Pu = e"b '™

Now if %' is the algebra generated by the b * then because
the transformation given by (1.10) is invertible it is easy to see
that #'|) = #|). Further, the operators b *b ! are num-

(1.11)

(1.12)
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ber operators in the usual sense and consequently the vacu-
um projection operator for %' (and #) is

A= sin 7b ¥*p ',?"
ka wh¥upl®
This shows that & |) is irreducible.

Finally, with the lemma above, it is possible to calculate
any vacuum expectation value of .. So (1.9) and (1.8) to-
gether define an irreducible representation up to unitary
equivalence. It is easy to check that (1.5) implies that (1.9)
holds on any subspace of % |) generated by a® (s fixed) and
so the theorem is proved. It is worth noting, in passing, that
for m = 2, (1.8) and (1.9) become the defining relations for
parastatistics of order 2, apart from a numerical factor.

It could still be asked whether the conditions (1.9) are
necessary to obtain the relevant Fock representation. We
remark only that this indeed is the case if we assume that
there exists number operators n, with the properties

P, = Y k,n,

T
[ak’nl] =64, (1.13)
st. n.|)=0,

where P, is the energy-momentum tensor. P, = H the Ha-
miltonian, can have no negative eigenvalues which implies
that n, has none. It is not hard to see now that for n<m

= wd, a*g* q*
W=a, a; a, ata*_ atl)

= a(kl’kZ""kn ’jn ’jn -1 ""’jl) |>’
where a is a numerical factor. We have then
(W) ) =alkkayokns Jrseeos Ji)-
So unless this vacuum expectation value has the value
b, s 51(2,-2 "‘6kn1n’

1vh

then we have a unitarily inequivalent representation. As a
final observation we see that

(1).W]))=(ata

5 atl)at at

n—1

...az |) )’

which shows that there are n! independent ““n-particle”
states for modular quantization, in the usual Fock represen-
tation given by (1.9). This contrasts with the situation in
para-Fermi quantization, see Ref. 11, where there are in gen-
eral, less.

2. HEISENBERG’S PRINCIPLE

As Green pointed out in his original paper, if one de-
fines P, as

P, = f (mg iw*("“w,;}“) d’x, 2.1

and one assumes that the ¢ '@ *"* (the spatial operators
corresponding to the a, ,a%¥) satisfy the equal-time relations
[corresponding to (1.5)].

w(r)a‘ﬁ(f}v) + '/,g+ llw(r+ e _ 6"55‘1.‘56( X, — 'EB)’

WO+ W =0
then Heisenberg’s principle is satisfied.

(2.2)
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Now what is the interpretation to be given to the color
superscripts? In this paper we shall adopt the following in-
terpretation. The only physical states shall be those given by
applying fields with a fixed color index to the vacuum. The
color superscripts can be regarded as a mathematical conve-
nience.

In this light, and given that the P, given in (2.1} is
unique (see for example Takahashi'?), we are faced with the
following possibilities.

1. Assume P, has the form (2.1) and that the appearance
of the superscripts is needed'® to construct physical observa-
bles but is not needed in constructing physical states from
the vacuum. This is somewhat analogous to the color singlet
hypothesis of Q.C.D. We adopt this approach below.

2. Drop Heisenberg’s principle (!). This is not as severe
as it sounds for the following reason: suppose we take the ¢,
to be the fields for “unobservable” quarks, then we would
not expect that Heisenberg’s principle should necessarily
hold for the individual quark but merely for the meson
U*Y,, .40, ¥** composites and the baryon ¢*“yP*yf*...p**
(m factors) composites. If we were to take P, as

P, = fi[;b*",z//a,u ]-d°x, (2.3)
then the following would hold [using (2.2)]:
[P [¥*Wa]s o= —B([¢*¥a] ) (2.4)

[P, p*oy*engp*e]

= —[URS R g ] (25)

Equation (2.4) evidently has the correct form. However, (2.5)
appears somewhat different to what one would expect.
This difference can be explored if one introduces the unitary
operator U (¢* ) corresponding to space-time translations

U (@")=explia“P,). (2.6)
Equation (2.5) can then be used to show that
U *a“ )y x> x')-p* N x7)U (@)

= YR x + QR X X7 R 7 0,

This has the naive interpretation that when a baryon is sub-

fermi
fields ¢ !r!

ansatz
tields wyir)

FIG. 1. The algebras associated with para-Fermi quantization. The shaded
area represents algebraic elements which are possible physical variables, for
example P,.
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jected to a space-time translation only two out of the m
quarks it contains are translated and the others are “left be-
hind.” Clearly this indicates that the x in ¢ **( x) cannot
have the straightforward interpretation that it does in usual
field theories. For this reason we consider the possibility of

. given by (2.3) as somewhat questionable. It is interesting.
however, that objects not of the usual ¢ *¢ or ¢ *¢ *---¢ * (m
factors) form (or products thereof) fail to satisfy relations of
the form (2.4) and (2.5) and could be considered to be as
“unphysical’ as quarks.

3. TRANSFORMATION TO FERMI FIELDS

We begin, as previously, by reviewing briefly the Para-
Fermi situation.® This is summarized in Fig. 1 to which the
following comments are addressed.

The ansatz fields are the spatial analogs of the operators
given in (1.3). As a result of Greenberg’s work one may re-
gard the parafields as a sub-algebra of these fields, providing
one is taking the usual Fock representation. The transforma-
tion to the Fermi fields is achieved by the nonlocal Klein
transformation. Explicitly we have

¢V =y"K, ,, rodd,

= — iy"K,, reven,

(3.1)
)4
K, =exp [iﬂ' Y Jz_//*‘”;ﬁ"’d 3x],
K, =K*=K "

For the Modular Fields the situation is slightly more compli-
cated as has been intimated in the previous section. The read-
er is referred to Fig. 2 and the following comments are ap-
propriate.

The restricted fields are the fixed color indice fields
mentioned previously and can be taken to satisfy the spatial
analogs of Egs. (1.8). Provided we have a Fock space satisfy-
ing (1.9) they may be regarded as a subalgebra of the expand-
ed fields.

The ansatz fields are the spatial analogs of the operators
in (1.12) and can be obtained from the expanded fields via the

ansatz
tields $r

expanded
fields !

FIG. 2. The algebras associated with modular quantization. The shaded
area represents possible physical variables; the P, which satisfies Heisen-
berg’s principle is included. The dotted area shows where the “‘non-Heisen-
berg” P, is located.
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unitary transformation given in (1.11). The transformation
to Fermi fields can be achieved by the following “General-
ized Klein transformation™

pV=u"'P". (3.2)
As Green has pointed out, # may be written as

u = exp (im 1),
with

r+lr)’ (33)

o 2\/— r;() e

ArsE f ,/,*m,/,*(s» d 3x,

which is similar in form to the third equation of (3.1).

3=

4. THE CONNECTION WITH GAUGE INVARIANT
THEORIES

Doplicher et al.'* have considered field theories (with
normal commutation relations) in which a global gauge
group “‘selects” out an “observable” algebra from a field al-
gebra, in the sense that the observable algebra is the subalge-
bra of the field algebra left invariant by the gauge group. It
also must obey the usual condition for observables—that of
local commutativity. They show that in such a theory the
super-selection quantum numbers are in one to one corre-
spondence with the equivalence classes of irreducible repre-
sentations of the gauge group.

If a para-Fermi theory is considered,* then providing
certain obvious conditions are met then the Fermi fields in
Fig. 1 can be regarded as above. As the above authors point
out it is possible to identify various subalgebras of the para-
field algebra which obey local commutativity. When these
are written in terms of the “normal” Fermi fields they be-
come “‘observable” algebras in the sense described above.
Now providing one assumes that K, |) = |) then the Fock
space H, generated by the parafield algebra is contained in
that generated by the Fermi fields. So in order to decide
which gauge group is the appropriate one for parafields it is
necessary to observe whether all super-selection numbers
are possible in &, (or equivalently, from above, whether all
irreducible tensors of the gauge group are included in H )
This turns out to be the case only for the group U( p).

The conclusion then is that the Fock-like para-Fermi

1

field theory is essentially equivalent to a normal Fermi the-
ory with U( p) symmetry except that the degeneracy asso-
ciated with a particular set of super-selection numbers is less
in the former case. In the case of Modular field theory the
situation is somewhat different since when Heisenberg’s
principle is assumed (as we shall do) P, lies outside the re-
duced algebra (the analog of the para-Fermi algebra). Cer-
tainly then, “observable” algebras cannot be constructed
purely from this algebra. In fact, we shall consider construc-
tions from the expanded algebra. Following the philosophy
put forward in Sec. 2 we shall regard the Fock space Hy
generated by the reduced algebra as the physical Hilbert
space.

We shall concern ourselves with the algebra'® generat-
ed by elements of the form ( x,,x, belonging to some region V'
of space-time)

m—1

Ulxx)= Z Y x 7 x), (4.1)
upon transformation to the Fermi fields we obtain
m—1
Ulxpx,) = Z ¢ *(x,)8 " x,). (4.2)

As has been observed, ' this algebra is the subalgebra of the
Fermi-field algebra which is invariant under the gauge
group U(m). The gauge group being implemented through
the automorphisms

m—1

a @ x))= > A’$"(x)), (4.3)

s=0
where the matrix A ’; being a representation of U(m) and
geU(m). It is worth pointing out that P, is also invariant
under U(m), a fact which is also true in the para-Fermi case.

Consider now the space H; mentioned above. This
space will become a subspace of the Fock space # generated
by the Fermi fields provided that «|} = |) which we assume.
(The G.N.S. construction of the Hilbert spaces precedes in a
nearly identical manner as para-field theory®). It remains to
be seen then, whether H, contains all inequivalent irreduci-
ble tensors of U{m). We begin by proving the following
theorem.

Theorem: Let 6 be the Young symmetrizer correspond-
ing to an arbitrary Young tableau with no more than m co-
lumns. Let the permutation group S, be implemented as
follows:

ye s, 7’('/’*(-"1)‘/’*(7‘2) Y¥ x, ))—¢*(xy(1))¢ (x 12)) V¥ x y(n)

Then

S(Y*( x ) y*( x,))#O0. O (44

Proof: 1t clearly suffices to show that

S(P*(x 1)~ x,))|) = S(¢* x,)-¥*( x,))) #0.
Now

P x ) (x,) = mi PR X O )™ 3,1

- mz_l f("p"m e )¢ *1r.)( x )¢ *m)( xz) ¢ *(r,.)( x )\> (4»5)
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with
i (i — Yr, — zrjr,-
flrury.r)=¢€=" <0,
where (3.2) and (1.12) were used.
For notational purposes we write each term of (4.5) as
f(r,,rz,..‘,r,, )(’1)("2)"‘{’”,.)\),

and the sum as

f("l”zv--”'n)[’]][rz]"'["n]]>’ (47)
the order of the brackets indicates which variable x; they
refer to.

Consider now an arbitrary ¥ € S,, then
P x)-*(x,))) = NS rory.wrin) [rzl“'[rn 17,

(4.8)

{4.6)

S Aruraer, ))ESign(?’)f(rm),rnz):---»rnn))-
Now let § = 6 where 7 is the symmetrizer and @ the anti-
symmetrizer for the Young tableau in Fig. 3. We have then

S(Y*(x\)-*(x,)|)) = (S (risrase.r)ry) ["2]"'[":. ] 1.
(4.9)

Since any term (ry)(r,}-+(r, ) is linearly independent of any
other term {s,)(s,)-(s,, ) unless s, = ro,...,s, = r, (see, for ex-
ample, Ref. 16), it clearly suffices to show that

A=8(f(0,1,..5(1) — 1,0,1,...,5(2) — (1)
— 1,..,0,1,...,n — s(t) — 1))£0.
Consider first
7 f(0,1,...,5(1) — 1,0,1,...,5(2) — s(1)
—1L..,0,L,...,n —s(t) — 1))
= di,(f(0,1,...,5(1) = D)o £(0,1,...,5(2) — s(1) — 1))
«n,(0,1,...n — s(t) — 1)),

where

X sl + 1= s+ 1) — () — 1))
d=¢ "'

and where the 77, are the symmetrizers for the ith rows of the
Young tableau. Defining

m,=s{i) — s(i — 1)<m,

we have
7:(0,1,...m)=€"° Y sign(d)e), (4.10)
perm
where
m;— 1
= 2 i,
O<i<y
and
m;— 1
gi)= S i,

i=0
and A is an arbitrary permutation of (0,1,...,m, — 1). Now the
right-hand side of (4.10) is just

€~ “det (S),
where S is the m; X m, Sylvester matrix

S,vj =6ij_
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f= s(1) —]
- )
Vu
oo 1
1
L]
j Va J
v, !
\ e e ;
- 5(1)-5(1-1)—~
- s ) —

FIG. 3. The Young tableau referred to in the text.

S'is (apart from a factor of 1/y/m) the inverse of the transfor-
mation given in (1.11). It determinant is given by
m;— 1
det(S)= ] (€'~¢€’)
i>j>0
(see, for example, Ref. 17), which is clearly nonzero for
m, <m (and zero for m; > m which is why the Young tableau
may have no more than m columns.) Thus

A =06[h0,1,...5(1) — 1,0,1,...,5(2) - 2(1)
— 1,01, 0 —s(e) — 1}],

(4.11)

where # #0. It is obvious from the definition (4.8) and the
character of 8 that

A= [ v #0,

=1
where ¥, is the number of boxes in the ith column of the
Young tableau. Thus the theorem is proved. As a corollary
to the theorem we note that

8 f(ryrynra) 7] [, 1)70. (4.12)

Consider now the algebra y generated by elements such as

é *(r.h( x,)b *(’z)( X,)dh *(’n’( x,).
Clearly this carries a representation of U(m) equivalent to
the n-fold tensor product of U(m)} and following Ref. 4 we
may decompose it into irreducible components using Young
symmetrizers ¢ S, where .S, is implemented on y as

> x,)-¢ > x,))
=@ * U x40 ¥ X)) ) el Xyin))- (4.13)

Comparing this implementation with that of the above
theorem and using (4.12) we conclude that for every Young
symmetrizer 8¢ S, which has no more than m rows there
exists an Xey (X = fr, a7 {rdlr2)+[ 7, ]) such that

5(X)#0.
Furthermore
E(X )I) € Hg,
as can be seen from the proof of the theorem above.
Toshow that all Young tableau occur, let & be an ordi-
nary symmetrizer. Then it is not hard to show, using (4.10),
{4.5), and (4.6) that
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P=2 (1 x)}-4*(x,)
=€~ det (S signi g 4O x,)--g 47~V x, ) £,

249
where we are using the notation following (4.10) with
m; = m. As was noted in Ref. 4 we have for g € U(m)

a,(P) = (det g)~'P. (4.14)

Now P corresponds to a single column Young tableau in the
implementation of S, in (4.13). By multiplying a suitable
productof P ’sby (X ) weobtaina U(m) tensor corresponding
to an arbitrary Young tableau. We have not, however, pro-
duced all “physically relevant” U(m) tensors and in fact it is
fairly easy to see that it is impossible to construct the meson
singlet. This contrasts with the para-Fermi case where this is
given by [¥*(x,),¥( x,)]_.

It is the view of this author that this “problem” may be
solved with the introduction of reservoir states. These are
vacuumlike states contained in the Fock space of the ex-
panded algebra. An example would be the state
|k ) = a*" ¥"|) which clearly satisfies b, |k ) = a;|k ) =0
(the aF and b ¥ being, respectively, particle and antiparticle
creation operators). The author hopes to pursue these mat-
ters further in a future paper.

5. COLOR SUPERALGEBRAS

Rittenberg et al.'® have considered a generalization of a
graded Lie algebra which has the generalized Lie product

(X X)) =X, Xp —(— )2, X, = C58X, , 4,
(5.1)

where the ¢ and B belong in general to an n-dimensional
complex “grading” space and (@,8) is a mapping which is
required to satisfy various properties so that the symmetry of
(5.1) is maintained and a generalized Jacobi relation is satis-
fied. The usual graded Lie algebra is obtained by considering
the vector space Z,. Rittenberg, however, considered the
more general vector space of Z, @ Z, & --- ® Z,. The rel-
evance to this paper of these algebras becomes apparent
when one realizes that the ansatz operators of both the para-
Fermi and modular schemes form color superalgebras with
grading spacesof Z, @ Z, @ -+-Z,and Z,, @ Z,, ® Z,, respec-
tively. The para-Fermi case has already been discussed by
Rittenberg. For the modular case one uses the mapping

(@B)=(2/m)a, B, — a,B)) + a3 B, (5.2)

witha,B,€Z,,,a, B,€Z,, and a,, B, € Z, and sets, for
example,

— hlay — p xlay)
Xy =0, X a1y =0%,

and all other elements equal to zero.

Inhis paper Rittenberg claims that to every color super-
algebra with grading space Z, & Z, - ® Z, (n factors) and
mapping (@,8) = Z,a; B, there corresponds an ordinary su-
peralgebra with identical structure constants. The corre-
spondence being given by

Y, =\l e X, (5.3)

n

X 0,00) — 1,

where the I' are Clifford matrices of dimension 2°
(n = 2v,2v + 1) which satisfy
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rr;+I,r,=25;1. (5.4)
The Lie bracket for the Y, is given by
(YY) =Y, Y, — (— 1 P,y (5.5)

Unfortunately the structure constants are not identical and a
short calculation will show that

Ciigtl=(~— (5.6)

(The C’ being the Y, structure constants.) The lack of sym-
metry between 3 and ¢ in the constant of proportionality
indicates that one may not overcome this problem by insert-
ing some factor in the right-hand side of (5.3).

The existence of the generalized Klein transformation
{3.2) suggests that a generalization of the explicit correspon-
dence (5.3) should be possible. (An implicit generalization
has been given by Scheunert.') We shall confine ourselves
here to the grading space Z,, ® Z,,, ® Z, and mapping (5.2)
and simply remark that obvious extensions exist. The corre-
spondence is

Y,=ESETeX,, (5.7)
where the E are the so-called generalized Clifford matrices

(see for example, Ref. 20) which are m-dimensional and sa-
tisfy

1)2.->j Beo g; 8

E\E, = €E,E,,
(5.8)
Er=1.
The Lie bracket for the Y, is
(YY) =Y, Y, — (= 1)"PY,Y,, (5.9)
and the new structure constants are given by
C;‘f’,_;*5= e"’B'Cg),}‘-’. (5.10)

Finally, we note that the new structure constants in (5.10)
and (5.6) mean that the ordinary graded Lie algebras ¥,
have the required symmetries in their Lie brackets and sa-
tisfy the usual Jacobi identities.

6. CONCLUSIONS

A comparison between modular quantization and the
usual quantization with U{m) symmetry has shown that the
theories differ in that modular quantization does not pro-
duce a meson singlet state. It does, however, produce all the
U(m) states for baryons, the degeneracy with respect to the
symmetry being greater than the para-Fermi theory but less
than the usual quantization. It should be stressed that these
conclusions depend on the condition (1.9) which selects out a
particular Fock representation among many possibilities.
Evidently other physical models may be constructed with
other representations. This has in fact been done in the case
of para-Fermi quantization by Bracken and Green.?'

It appears that the color superalgebras provide the basis
for the most fruitful generalization of the results presented in
this paper. It would seem to this author that one cannot
really consider the elements of these algebras as physical
fields but one needs to consider linear transformations of
same [such as that given by the Sylvester matrix in (1.10)].
This is to ensure that a suitable reduced algebra may be iden-
tified and a time ordering (see Ref. 6) defined. The usefulness
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of the color superalgebras lies in the possibility of Klein
transformations to ordinary Fermi fields. This allows us to
examine whether the generalized quantizations correspond
to any “usual” theory. In this light it is worth pointing out
that the “non-Heisenterg” P, given in (2.3), when trans-
formed to usual Fermi fields, involves the nonlocal u opera-
tor. This is a strong indication of its peculiarity.

Finally it should be pointed out that the above discus-
sion could be easily altered to deal with Bose-like fields rath-
er than the Fermi-like fields considered. In this case the an-
satz algebra would be a color algebra (rather than
superalgebra) with the grading space Z,,,  Z,,, .
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An asymptotic expansion for the generalized quark statistical distribution function in which
quarks are introduced into Chao-Yang statistics is derived. Mathematical properties of the

function are also examined.

PACS numbers: 14.80.Dg

1. INTRODUCTION

The Chao-Yang statistics' was first introduced in 1974
to determine the statistical charge distributions of nucleons
and pions in “violent collisions.”

The well-known quark structure of hadrons was later
incorporated into Chao~Yang statistics to give the so-called
quark statistics.>™ Such a scheme was strongly suggested by
us because of our firm belief that quarks are the basic con-
stituents of hadrons.

When two colliding systems impart violent impulse on
each other either by transferring large transverse momen-
tum or arresting each other completely in a small region of
space before disintegration the physical assumption in quark
statistics is that the quarks of the colliding systems must
participate fully together with the quark-antiquark pairs cre-
ated at short distances within the small central region. They
are therefore asymptotically free and their mutual interac-
tions may be neglected. Using quark statistics, we are able to
calculate the particle ratios and dihadron spectra in the final
state of a violent hadron—hadron or hadron-nucleon colli-
sion. The results obtained are in good qualitative agreement
with experiments.

Il. STATISTICAL DISTRIBUTION OF QUARKS

Consider a collection of / quarks of n types q,, 45,-..,.q,,
and their associated antiquarks g,, g,,...,7,. We define n, to
be the number of ¢, quarks in the collection, and n; , n,_, n,
etc., are similarly defined. The quantum state of the collec-
tion is given by (m, m,,...,m,) which is equivalent to a state
of m,q, quarks, m,g, quarks, and so on. From these defini-
tions, we have

(ng, +ng)=1 (1)

Rg — Mg =My,

i=1.2,.,n (2)
As an illustration, the “quark quantum state” of 7~ p
consisting of 2u quarks, 1% quark, and 24 quarks is repre-
sented by (1,2,0,...,0}.
LetN/, . .. bethe number of possible ways of dis-
tributing (m,, m,,...,m,) over a collection of / quarks. The
generating function of N}, . is defined as

173 J. Math. Phys. 24 (1), January 1983

0022-2488/83/010173-04802.50

i XXX 3)

where x; and l/x,- are variables for g, quark and g; anti-
quark, respectively. In order to investigate the symmetry
properties of the distribution function we have assumed
equal probability for the creation of all kinds of quark-anti-
quark pairs in the central region.

To obtain an explicit expression for N in..m,,..-,m"’ we
multiply both sides of Eq. (3) by
(1/x%+ Y (1/x% + )e(1/x% ") and perform the contour in-
tegral by means of Cauchy’s integral formula.

We obtain
NI
. 1 d_xl 4_)2§ dx, . {zi(xi + l/xi”[
(27Tl‘)'l Xy X5 X, x’l"'xa"z...x:l""

(4)

iil. MATHEMATICAL PROPERTIES AND THE PHYSICAL
IMPLICATIONS OF THE DISTRIBUTION FUNCTION
Nm,,m,,....m,,

@ > Nomym, =2n)" (5)

Proof :l'hls follows by putting x; = 1 in Eq. (3). It
should be noted that the number of possible quark combina-
tions increase much faster than the exponential increase e’.

(b) N}, m,....m, is invariant under any permutation on
the n symbols (m,, m,,...,m,).

Proof: This follows from the symmetry of Eq. (3} under
interchange of the variables x;’s. This implies that
N, ... depends only on the number of quark-antiquark

combmatlons but not on their ordering.

(c) N ﬁ,,mm is invariant under any change of sign on
the n symbols (m,, m,,....m,).

Proof: This follows from Eq. (3) which is symmetric un-
der the interchange of the variables x; and 1/x;. Physically
this means that the number of possible quark combinations
N, m...m dependsonly on the absolute differences between
the quarks and the antiquarks of the same type.
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(d) Nﬁn,,mz,.“,m" =0 if(/+ Z,m;)is odd.
Proof: On replacing x; by — x; in Eq. (3), we have

(—I)I[Z(x,--f-%)]l = N (=Nl

my, my,...m,

XXX (6)

n

Combining Egs. (3) and (6), we obtain

DO (R VAT A .

m,, m,,...m,

Ix;rll...x;n" - 07
and hence
Nimeam, =0 (14 Sm, ) is odd.

(e)Jvfn..m2 ..... m,

1

— -1 1—
- Nm, — 1,my,....m, + ]Vml + Lomy.....m,
11— [
+ Nm,,mzf l,....m,, + Nm,,mz+ L...m, _+— o

(7)

Proof: This is immediate from the definition of
N .. .m ifwenote that a collection of / quarks is obtained
from a collection of / — 1 quarks by adding either a ¢, or g,
quark.

mymyam; + loom,

I—1 [—1
m; Nm,,mz ,,,,, m,—1..m, -N

Proof: By differentiating Eq. (3) with respect to x;, we
obtain

m,N'

My my,...m

m, = [(N[ - l.om,

myry,.m;

f—1
- ZVm..m2 ..... mi+ 1 m,,)'

,,,,,,

Similarly if we differentiate Eq. (3) with respect to m;, we will
obtain the above ratio for m; over m,.

IV. MODIFIED STATISTICAL DISTRIBUTION FUNCTION
AND THE DEFINITION OF PROBABILITIES

In Sec. III for simplicity we assumed that the quark
combinations resulting from violent collision are indepen-
dent of the types of quarks involved in the reaction. This
implies that for a fixed /, each of the states N}, . . is
equally probable. Now, in order to satisfy the experimental
results that the production of strange hadrons is suppressed
in non strange hadron-hadron collisions, the equation of the

generating function may be modified as follows:

{Zai(xi + %‘)}[ = 2 Jvlm,.mz ,,,,, m,,

X XXX, (9)
where g;’s can be interpreted as the relative strength in pro-
ducing the ith type of quark among the n types.

The probabilities of finding the individual quarks and
antiquarks, respectively, are defined as follows:

P, = oy b (10)
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Nf'ni,rln ,,,,, m,+ L...m
P, = - . (11)

m,.my,...,m,

These definitions can be easily generalized to a collection of
k quarks.

To obtain the particle ratios in terms of the distribution
function N ﬁ,,“,,,pmmn, we consider a violent collision of the
hadron 4, and 4, having quark states (p,, p,,-..,2,,) and
(9., 9-,---.g,,) and consisting of k, and &, quarks, respectively.
It is reasonable to assume that the probability of producing

h, is proportional to
N [k,

My = pyyMy — Preci, — D, (12)

N ’

my.m,,....m,

and similarly the probability of producing 4, is proportional
to

NIk
1 G2 — Gy, Gn . (13)
Ny
Hence the ratio of the two hadrons is
N s oo
ﬁl_ o 1~ PNy — Py n " Pn ) (14)
h, N~k

my = gy — G, M, — 4y,

V. ASYMPTOTIC EXPANSIONOF N/, ..

We shall now derive the asymptotic expansion for the
modified distribution function N|, , . by substituting
X, = ¢ into Eq. (9). We obtain
Nl

my,m,,...n,

[ ” i C 2
- (22 ) f de,f a6, [ d6,(3 a, cos 6, [] costm;6))
mtJ . 7 -7 i=1 /

j=1

t o, g i
= ZZJ d&j d9z"'f d6,(ya; cos ei)l.Hcos(mﬁj),
T o 0 0 i J

(15)

if we made use of the fact that cosine is an even function and
sine is an odd function.
We can further split the integral into quadrant as

™ T/2 /2
fde,:J de,.+f dimr—6,), (16)
0 0 (]

and hence

J de, J d6,-- f de,
0 (¢ 0
/2 T/2 T/2
_ J 46, f 46, f 4o,
0 0 0
/2 /2 /2
+J- d(ﬂ—@,)J- d92---J de,
0 0 (4]

/2 /2 /2
+f d(),f d(v—&z)---f do,
0 (0] 0

/2 /2 /2
+f d(fr-e.)f d(v—&z)---f d6,
(¢] 0 (4

- J “dr—6, )J:/zd (m — eg---KZd (r—8,)
(17)
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Note that the products [] cos(m,8,) in each term of Eq. (17)

are equal in magnitude except for a difference in sign. Fur-
I .

thermore, the summation () a; cos8;) is constructive for the

first and last terms of Eq. (17) only and for the other terms in
which the summation bears opposite sign they are destruc-

tive. As I— o0, the destructive terms are in orders of magni-
tude smaller than the constructive terms and we are there-

fore left with terms, i.e.,

T T 7/2 /2 7/2
lim d()l...f deo, =f dglf dgz...f dé,
l—oJo 0 0 0 0
/2 /2 /2
+f d(ar-—Ol)f d(w—oz)...f dimr—6,). (18)
0 0 (¢]

Hence
Nl

m,m,,.

~{1+(—1)’+2f"‘f} f def dozf de,
-(i;la, cos 6‘,-) I;Ilcos(mjﬂj). (19)

The integrand can be expressed in series as follows:

m26? mie* )
,-Bi - (1 _ IR + Vi .
Hcos(m ) H 5 >

i

1 1
=1— _zm292+ __th‘gt‘
! 1 24 - i {

—Em 'm0} + - (20)
8 Zi
and
1 1
080 =4 — —Sa.62 + —Sa.0t
S, cos 0, S Sa6? + 24;a. ,
~ ——Za 6° + (21)

720
where allg;’s>0and Ya; = A.

Suppose
T'a, cos 6, = Series X-A exp[ —(1/24 )za,.ef], (22)

so that on comparing with Eq. (21), we obtain

. 1 1 2
Series X =1 [__ 04— ( a.e?)]
+24A§i_‘,a,, SAZZ"
1 PY: 1 ( 2)3
+i— ——Dab;— a,0;
- 3

7204

48A (Za i )(20’6’:)] -

202
- - Saa00
720A3 Z(lSAa — 302> — 42a,)0°
48A T e — 6aia)016;
B 24A3 2, 5140k 01070% + . 23
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Using the finite integral for large /

1 J‘Tr/z 2 ( aiel? )
= 8% expl — !} do,
T Jo P 24
A Y2 1.3.5..2P - 1)
~AF , 24
(Zaiw'l) afl® 24)

we can express the distribution function when (/ + Z,m;) is
even as

Vi s (1)

where Series Y'is a series having inverse powers of /. The new
series can be evaluated by the product

Series Y, (25)

(Series X ) [] cos(m,9;),

and the preceding integral formula (24).
The first term in Series Y is obviously equal to 1. The
second term is

1 m* 1 ! 3(da, — 3a?) 1
ATt ¢
! aa; 1
-?,-#,- a;a; 17
which is equal to
1 4m; — 1
_ 81(;: +2n+4Y ” ) (26)
The third term is
42 3,,,2 mim? Al . 15mi{da; — 3a?)
24 4 af[2 %aalz_ﬁ ; aj’?
Al 3m,2(Aa - 3aj) 3a,a;m?
48 = a,a@l? ?,#, aial®
Al m?ajak ]2 105 Aa — 3a%?
+ F,-#j#ka,.a,akﬂ 2242 Z atl*
+ K 5 YAa; — 3a})(Ada; — 3aj) L 5 9ala;
224 & a?a}l“ 2.87 ey’ azazl
+ 4]2 3dlaa, 1?2 a,a;a,4,,
2.8 St ala,a,l* 2-8% i E a,a;,a,a,,1*
212 3(4a, — 3a})a;a,
2:8:24 Sk a?ajakl“
2212 15(da, — 3atja,q;
2824 & dlal®
2 3 2
+ ! z 15(154a; — 30a; — A4 %q,)
720 4 al?
L L 3(4a,a; — 6a’a)) 1 a,a;a,
48 = aja;l’ 24 fivaaal’

A? ( m?>2 9 — 40m?
= 16 e —_ !
12812[ 2,: a, + Z a? * ;ja’.aj
_ z 8’".?]+ (n+2)n+4)Az4m —1
,-,é,aa 6412

+ (25n + 78C2 + 76C" + 24c4,

12812
(27)

where C7, is the combinating function.
Substituting these results into expression (25), we obtain
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the asymptotic expansion of N/ gty BS

o () ()™
X {l - 8%[”2 +2n +AZ 4m:21,._ 1]

A2 m?\? 9 — 40m?
+ 6 — -
12872 [l (Z a; ) ]+ Z ai2

1
+
_yg ¥ At 2n+ 4
i#j 4;4d; A
dm? — 1
X
27

t

+ ;17(25n +78C% +76CT +24C1)

+0 (li)} (28)

Having obtained the asymptotic expansion of N/, g,
we shall examine the ratio », which is the probability of pro-
ducing hadron 4, to the probability of producing hadron 4,
given by Eq. (14). We have

1—k,
N (my — pshalrmy — plaenm,, — o)
r= , (29)
NIA k,
(my — qudeeslmy — quslmy, — g,,)

which can be expressed as

r=(24 )(kh_ k‘)(l — ks )n/2
I—k,

L+ e/l = k) + 6/ — k) +
1+ b,/ — k) + by /(I — k) 4 e
where 1, 1,, b,, b, are the coefficients of the asymptotic ex-
pansion of the distribution function and can be obtained
from Eq. (28).
The second factor of Eq. (30) is

(30)

[__kb n/2 n n
=14 —(k, —k —ik, — k
(I—k,) + 21( ») + 812( b)
X [nlk, — k,) + 2k, + ky}] + - (31)
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and the last factor can be simplified to

I+ lb [ktl

Hence the ratio becomes

kyby + 1, — b, — (t, — b))b,].

r=(24 )‘“‘k"[l + H%(k, — k)4 (6 — by)
1 [n? n
+ | T — kP 2k -k

+ %(k, — k)1, — b)) + k,t, — kyb,

o= by— (= by |+ -} (32
Note that
I|—b1= __iz (mi pl) - (ml ql) (33)
and
2 2 o _2 2
gl
Csat < im—pP —im—af
16 Z a? .
_ A_2 (rm, _pi)z_(mi_qi)z
16 = a;a;
+ A nray
16
— .2— JR— 42
XZ (mi p:) (ml ql) ) (34)

i a,‘
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This paper investigates the method of projection collocation using cubic B-spline approximants to
solve singular integral equations arising in scattering theory. Theoretical error bounds are
provided for the approximation which give criteria for estimating the efficiency and convergence
of the method. As numerical examples we solve the two-body K-matrix equation with a separable

potential and the Reid 'S, soft-core potential.

PACS numbers: 24.10. — i, 02.30.Rz, 25.10. + s, 02.60.Nm

1. INTRODUCTION

The aim of this paper is to investigate the method of
projection collocation, with cubic B splines as basis func-
tions, to obtain approximate solutions of the singular inte-
gral equations that arise in scattering theory.

It has been shown' that three-body scattering can be
described by the solution of singular multidimensional inte-
gral equations. The numerical solution of these equations is
known to be difficult and complicated.

The present paper is devoted to a discussion of the nu-
merical solution of the simpler two-body scattering problem,
but a straightforward application of the methods described
here may also be used to obtain numerical solutions of the
integral equations that describe three-body scattering.

The general method of projection®™ has been used suc-
cessfully to obtain approximate solutions of the integral
equations that describe few-body systems. Osborn® investi-
gates the use of moment methods to obtain approximate so-
lutions of the singular two-body Lippmann-Schwinger
equation. The use of splines and the Galerkin method to
solve the corresponding homogeneous equation is described
in Ref. 7. More recently Fiebig® has advocated the use of
splines to solve scattering and bound-state problems. Similar
methods have been used to solve integral equations that de-
scribe the three-body bound-state® and scattering prob-
lem.'™"" In Ref. 11 use is made of bicubic splines to construct
an approximate kernel that is degenerate. It should be re-
marked that a collocation method with bicubic spline ap-
proximants has also been used to solve the three-body inte-
gral-differential equations for the bound state problem in
configuration space.'?

In this paper it will be shown how the use of splines as
approximants to the solution of two-body integral equations
yields an easily programmable method for solving the scat-
tering problem. An error analysis shows that this method is
numerically stable. The method is also shown to be efficient
provided that the fourth derivative of the scattering solution
is sufficiently small.

Section 2 gives a mathematical formulation of the meth-
od, and provides error bounds for the approximation. Sec-
tion 3 shows how this method may be applied to scattering
integral equations, and in Sec. 4 we give our numerical
results.
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2. THEORY

The method of projection for solving integral equations
of the second kind** has not only proved successful but has
enabled the theoretical investigators readily to provide error
estimates for the solution. The particular subclass of meth-
ods of projection we employ is that of collocation with spline
approximants, which in turn gives rise to the need for the
evaluation of principal value integrals. The method used for
evaluating these integrals is that of subtracting the singular-
ity and computing the resulting nonsingular integrals by
means of Gaussian quadrature.

The general problem, from which our physical problem
is taken, is the solution of the operator equation

I-F)f=y, (2.1)

where f, yeC (X ), the space of continuous linear functionals
defined on the compact set X; %, I are linear operators
mapping C (X) into itself with I the identity operator.

The essence of the projection method of solving this
equation is first to choose a linear subspace S of C (X), with
which to approximate f, and an appropriate bounded projec-
tionoperator Pmapping C (X Jonto(I — ¥)[S ]. Theapproxi-
mate solution to our problem, using this projection, is the
geS such that

PUI—%)g=Py. (2.2)

A general error analysis® shows us that if % is bounded
(I — KF)~ ' exists, and ||.%" — P¥|| is bounded by
I —=F)~Y~", then

IS —gli<d =PI f— Pf - (2.3)
The particular problem we address is the solution of the
integral equation

fls) — ij (5,2)f(t)dt = y(s), a<s<b. {2.4)

We choose for our linear subspace S of C [a,b ] a finite-
dimensional space of cubic splines with a given set of knots.
To be precise, let 7, be a partition of the interval [e,6 ] de-
fined by the knots a = ¢, < #, < -1, = b with mesh spacing
h, =max{(t,, , — #,):1<i<n}. On this partition together
with the extended knots ¢ _,<t_ <t,<t; < <2, <t
<t, ., ,<t, .3, we can construct the cubic B splines
{B,;: i =0,..,n + 1}. Each Bspline B,, is a cubic spline hav-

n+41
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ing nonzero values over the interval (¢, _,, 7, , ,), and the set
of B splines form a basis for the (n + 2)-dimensional sub-
space of cubic splines for the partition 7,,.

Given n + 2 distinct points so,...,s, , ; in [¢,b] and any
function feC [a,b ], we can define the operatorP, mapping
C[a,b] into S such that

P, fls;)=flsi)s
From the properties of cubic splines we have that

P,(af+ Bg) = aP.f+PP,g, (2.5)
PLf=P,P,f)=Pf; (2.6)

hence P, is a projection operator.
Using the B-spline basis we letP, f be defined by

n-+1
Pf=Ya,B,; 2.7)
=0

i=0,.,n+ 1

then
P~ F)f="S anl— B,
i=0

and the coefficients {@p; } are found from the system of lin-
ear equations

n+1
Yaull—X)B,],=ys) j=0..n+1, (2.8)
i=0

where |¢ denotes the value of the operator at the point s.
Owing to the identity term, the linear equations so
formed are well-conditioned integral equations of the second

kind.

The method described here is useful because error esti-
mates are available.

From De Boor and Schwartz® we have the following
inequality: if feC %[a,b ], then

I/ = PSlI<sll S A s (2.9)

and in particular, if the collocation points of the set {S;} are
the points ¢, (t; + £,)/2, toy.cst, _ 1, (8, _ +2,)/2, 2, then

where &) = min{(r,, , — t,):1<i<n — 1} .

Hence using the equation given above, if g is our ap-
proximate solution then an upper bound for the error is giv-
en by

1 — gl <1 + 3k /B Pl S N 7) -

and a rate of convergence of O (h ) results.

We note here that the collocation process described
above does not prescribe any form to the kernel. However,
the coefficients of the linear equations involve the integrals

(2.11)

b
J Kist)B,(t)dt, 1=0,...n+1, (2.12)
and to effect a numerically stable algorithm these integrals
need to be evaluated accurately.

In scattering problems we assume the kernel X is singu-
lar and of the principal value type. The evaluation of the
moment integrals is best performed using the method of sub-
traction of the singularity. An error estimate for the evalua-
tion of this integral using the method of subtraction and a
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quadrature method of at least second order can be derived as
in Ref. 13. Thus if

Kit)=G ()it —u), 2.13)

then for a<a<u<B<b we have an error estimate for the nu-
merical solution of Eq. (2.12) of the form

(&*/T20)[F""(B) —F""(a)] + O (5%,
where & is the step length used in the integration and

(2.14)

F""=4G'B;'+6G"B;. +4G"B., +G""B,, .
(2.15)
As shown by Sloan* we can improve on the approxima-
tion g, of f which interpolates the points
{(5:,84(s:)):i =0,..., n + 1} by constructing the sequence of
functions {g; }€C[a,b ] from

b

giv skl =21+ [ Kistlglopdr. 2.16

As we shall see later, this procedure, which we refer to
as the iterative improvement, has the effect of smoothing out
oscillations in the approximation g,,. Note that for all
0,8(s;) = go(s;),/ = 0,..., n + 1; hence this smoothing oper-
ation does not change the approximation at the collocation
points.

3. SCATTERING EQUATIONS

We now apply the method described in Sec. 2 to a phys-
ical problem, viz., the solution of the principal-value integral
equations that describe two-body scattering. The partial-
wave equation for the half-shell X matrix M (p,k ) has the
form

Mipk)=o{pk)— -fr-f o o)

pdp’
p'z _ k 2
where v( p,p’) is the potential and k is the on-shell momen-
tum. The integral in Eq. (3.1) is evaluated with respect to the
principal value prescription. The solution M ( p,k ) is a real-
valued function and can be expressed in terms of the phase
shift 8 (k) by

M{kk)= — [kcot8(k)]™". (3.2)

X M(p'k), pe[0,eo] (3.1)

It is convenient to map the integral in Eq. (3.1) onto a
finite interval. To do this we introduce the variable
x€[ — 1, + 1] by the mapping

p(x)=77(i ii) (3.3)

where 7 is a constant scale parameter. Equation (3.1) can
now be written in the form

M{ plx).k ) = v( p(x)k)

2 % J‘i ol ple) p’(X'))( : ii )2

M{p'(x').k)dx’
(771 +x) — k21 —x]°
xe[ =1, +1]. (3.4)
M. Brannigan and D. Eyre 178



Let M, be the spline approximation P, M to M given by

M, (plxhk) =S alk)Bolx) .

i=0

(3.5)
The linear system of equations formed is

S [Busts) + Lol ok 1ol ) = 0l PR ) = Oyam 41,
B (3.6)

wherex;, j =0,...n + 1, are the n + 2 collocation points and
p;=p(x;)and I,,,(x;,k } are moment integrals formed from the
kernel of Eq. (3.1) convoluted with the cubic B spline, viz.,

1 2

ripkr=2 2 [ gy ota (1E5)

T J- 1—x
B,;(x)dx

(7200 + xF — k(1 —xP]
ij=0,..,n+1. (3.7)

The choice of 7 = k leads to a pole in the integrand at

the on-shell value x = 0. Thus

Lipk) = £ f R p,-,p(X))(1 + x)2

T 1—x

’

X B,;(x) i)f—, Lj=0,.,n+1. (3.8)
x

We therefore see that by applying the projection collo-
cation method to the integral equation in Eq. (3.1) we have
reduced the problem of solving an integral equation to that
of setting up a solvable linear system. Moreover, by expand-
ing the K matrix in the cubic B-spline basis the moment
integrals are restricted to be a convolution of the kernel with
a function no more oscillatory than a cubic polynomial.

Using one iteration of the iterative improvement
scheme we obtain a new approximation M, given by the
formula

B, (plx)k) = ol plek) — 3l L plxhe)
- (3.9)

where I,;( p(x),k ) is given by Eq. (3.7) or (3.8) with p(x) re-
placing the discrete values p;. At p(x) = p; the approxima-
tion M, coincides with the approximation M,,, i.e.,

M,(p.k)=M,(p;k). (3.10)
It follows that M, provides no additional information

at these points. However, along p(x)# p; the approximation
M, differs from the cubic B-spline interpolate M, .

4. NUMERICAL RESULTS

In the formulation of the computer procedure to test
the validity of this method, particular attention was paid to
numerically stable methods used in the subprocedures.

The evaluation of the B-splines were performed using
the iterative technique of Cox'* given by

(x — X m) B‘,:T__ln(x) + (x,. —_ x) B(:’l‘ 1'(x)

Bx) =

xi —Xi_m

(4.1)

where m is the order of the spline. For the cubic spline,
m = 4. This procedure is both computationally fast and ac-
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curate, as the analysis in Ref. 14 shows.

Having this stable method of calculating the B-spline
basis we need to evaluate the moments 7,; which are of the
principal value type. Different methods were compared in
Ref. 13, the conclusion being that use of the method of sub-
traction of the singularity gave better results. In our pro-
gram, we used a Gauss-Legendre quadrature formula with
error analysis as described above. The actual moments were
calculated over the intervals [#,, ,,z; ] and summed. It is to
be noted that over each interval only four of the cubic B
splines are nonzero so that each B spline needs to be evaluat-
ed only once at the quadrature points, which contributes to
computational efficiency.

The linear equations formed were solved using an LU
decomposition, a method that is satisfactory because the ma-
trix of coefficients is well conditioned.

All computations were performed on a CDC Cyber
with a 48-bit mantissa.

To illustrate the properties of our method we first con-
sidered an equation for which a simple analytic solution ex-
ists, viz., a one-term separable potential of the Yamaguchi
type.'® In momentum space this potential has the form

o pp') = A /(P + BN p? + B (4.2

We shall assume that this system can support a bound
state, i.e., that the parameter A is fixed by ensuring that the X
matrix hasa pole at thebindingenergy k > = — €inEq.(3.1).
Over the scattering region, k>0, the half-off-shell K matrix
is given by

_(KF2HB\[ _ 5. K+B?
M(p,k)-(p2+ﬁ2)[ g+ At
(k2+B2)2 _1
i 2/3(3+a)2] ’ )

where @ = (€)'/2. Thus we have a simple analytical form for
the half-off-shell K matrix against which we can test our
method.

We computed our results using the constants
B = 1.44401 fm~ ' and € = 0.053695 fm 2. These param-
eters were chosen so that the Yamaguchi potential will ap-
proximately describe low energy neutron—-proton scattering
in the s-wave spin-triplet channel. For each calculation we
used evenly spaced knots and collocation points as indicated
in our error analysis.

TABLE L. Convergence of the projection collocation method for a separa-
ble potential at scattering threshold. Scattering length @ is measured in fm.

n a=M{(0,0)

Exact — 5.3800
—5.5333
— 5.6077
— 5.4025
—5.3777
—5.3782
— 5.3791
— 5.3795
—5.3797
— 5.3800

W

WO WO NN

——
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We first calculated the scattering length for this poten-
tial, and the results are given in Table I. We note the fast
convergence to the correct value of 2 = — 5.3800 fm.

We next considered the solution at a scattering energy
of k?=1fm 7 In Fig. 1 we graph this solution over the
interval [ — 1,1]. Figure 2 illustrates the difference between
the exact solution for the K matrix and its value when calcu-
lated by our procedure for various numbers of knots. As can
be seen, the error decreases rapidly as the number of knots is
increased. Using iterative improvement once, we get an ap-
proximation M, given by Eq. (3.9). In practice this approxi-
mation requires little additional computation as it requires
only the evaluation of the moment integrals
I .(pk)i=0,..,n+ 1, at the interpolation point p. To com-
pute these integrals we use the recursion relation given in the
Appendix. In our Fig. 2 we also graph the result of iterative
improvement for four knots. We note how the error has been
smoothed out, but passes through the interpolation points
given by our original collocation points.

To show the convergence properties of our procedure
we tabulate, see Table II, the L _ [ — 1,1] or Tchebysheff
error norm. For a function f(x),xe[ — 1,1], the Tchebysheff
norm is defined by || f|| = max _ ..., | f(x)|. The first col-
umn gives the error for the procedure for various different
knot spacings, column 2, the error after one iteration of itera-
tive improvement. For this particular potential we can also
calculate the theoretical error bound given in our analysis,
which for k?=1fm~?is

M, — M ||<0.4333 (—2_1)“ (4.4)

M (p,k) in fm

FIG. 1. Exact K matrix given by Eq. (4.3) at a scattering energy of k * = 1
fm—2,
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0.06 T T T

.04

0.02

Mq(p,k)— M(p,k) in fm

-0.02

FIG. 2. Approximate K matrix obtained using the separable potential. Er-
ror function M, (p,k ) — M (p,k ) for the cubic B-spline interpolate with »
knots. The — curve is for n = 4, the ---- curve for n = 6, and the .... curve for
n = 8. The -x-x curve is the result of using the iterative improvement,
where 0 denotes the position of the knots.

In column 3 of Table II the value for this error bound is
given.

We first note that, as column 1 shows, the rate of con-
vergence for our procedure is of order 4 *. Column 2 shows
this rate of convergence also and a consistently smaller error
for each value of n. Finally, as predicted by the theoretical
analysis, each of these errors is smaller than the theoretical
error bound given in column 3.

The results we have shown so far have been used to test
the method against a problem for which an exact solution is
known. We next consider the solution of a more complicated
system.

To this end we carried out the numerical calculation
with the Reid 'S, soft-core potential.'® In momentum space

TABLEIL. Convergence of the Tchebysheff norm at a scattering energy
ofk?*=1fm~2

n IM, — M| I, — M| Bound

4 0.57(— 1) 0.29(— 1) 0.86(— 1)

6 0.58( — 2) 0.90( — 3) 011 -1)

8 0.93( — 3) 0.29( - 3) 0.29( —2)
10 0.29( — 3) 0.95( — 4) 0.11({—2)

12 0.20( — 3) 0.41(—4) 0.47(—3)

16 0.48( — 4) 0.11{ — 4 0.14( — 3)
24 0.71{— 5) 0.20( — 5) 0.25(— 4)
32 0.16( — 5) 0.58( — 6) 0.75(— 5)
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FIG. 3. K matrix for the Reid 'S, soft-core potential at a scattering energy of
E,, =48 MeV.

this potential has the form

, 3 (p+p)V+u’
vpp)= —— Y V.n [—— . (45)
4upp’ = (p—pP) +u
wherep, =0.7fm ™', u, =4u,, puy=Tu,, V, = — 10.463

MeV fm 3 ¥V, = — 1650.6 MeV fm >, and V, = 6484.2
MeV fm~*. To obtain a reference solution we used the meth-
od of Haftel and Tabakin'’ to solve Eq. (3.1).

Figure 3 illustrates the reference solution at a labora-
tory scattering energy of E,,, = 48 MeV. This solution ex-
hibits a much more complicated structure than our previous
example, and therefore provides a more stringent test of our
method than the system illustrated in Fig. 1.

Since we do not have an analytical form for the moment
integrals, we have to evaluate these integrals by numerical
quadrature. We partition the region of integration according
to the mesh spacing 7, i.e., we write

n—1
Ini(pj’k)= z I‘n’:"(pj:k) (46)
=1
and evaluate the integrals
k ([ 1 2 d
100k = < [ oot (FE2) 800 2
T Jx, 1 —x X
4.7)

Of course only integrals over the interval [x; _,,x;, , ]
will contribute to the sum in Eq. (4.6). In the case when
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Mq(p,k) = M(p,k} in fm

1
=-1.0 o] +1.0

FIG. 4. Approximate K matrix obtained using the Reid 'S, soft-core poten-
tial. Error function M, (p,k) — M (p,k ) for the cubic B-spline interpolate
with n knots. The — curve is for n = 4, the ---- curve for n = 8, and the ....
curve for n = 16. Knots are evenly spaced over the interval { — 1, + 1].

0e[x,,x,, , ], the integral in Eq. (4.7) is evaluated with re-
spect to the principal value prescription with error analysis
as given above. Using the method of subtracting the singu-
larity, we write

10 p;k)
L[ fomali2)

X By(x) — v (py,k )B,,,(O)] &

+0(p, k 1B 0) %m ’x’x;" . (4.8)

!

The integral is now replaced by a standard Gauss—Le-
gendre quadrature formula.

Figure 4 illustrates the difference between the approxi-
mate spline solution M, and the reference solution of Eq.
(3.1). The knots are evenly spaced over the interval
[—-1,+1}

An important practical consideration in applying this
spline approximant is the correct positioning of the knots.
We do not attempt a detailed analysis of this problem in the
present paper; however, it is interesting to modify the mesh
spacing and then solve the system in Fig. 3 with a different
choice of knots. For this purpose we choose the knot posi-
tions as Clenshaw—Curtis points over the interval
[ — 1, + 1], i.e,, the knots are given by the formula

xp= —cos P Uy (4.9)
n—1
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Mp{p,k) - M(pk) in fm
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FIG. 5. Same as in Fig. 4 but with the knots spaced along Clenshaw-
Curtis points.

Figure 5 illustrates the difference between the approximate
spline solution M, and the reference solution. Although the
rate of convergence is found to be similar to that of the evenly
spaced knots, the choice of knot positions is seen to signifi-
cantly influence the approximate solution.

It should be remarked that in any practical application
of this method it is advisable to concentrate the knots in a
region where the scattering solution has the most structure,
and in this way one may hope to optimize the accuracy of the
solution for a given number of knots.

These results demonstrate that the projection colloca-
tion method with spline approximants is a practical and nu-
merically stable procedure for solving the integral equations
arising in scattering theory. As shown by the error analysis
the approximate solution can be found to arbitrary accuracy.
In the test problems that we have considered, the method has
demonstrated that accurate solutions can be obtained with
only a small number of knots and hence small linear systems.

APPENDIX

In this Appendix we evaluate the moment integrals

- Im'(p!k)
1 2
= ‘—i_vi 2 (12+X)2 zB'“'(x)d_x
PRI T ) k(1 +x7+ 631 —x) x
i=0,n+1. (A1)
We write
Lipk)= —~ 2 p k), (A2

k2+ﬂ2 P2+ﬂ2
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where

1L (1 dx
(k)= — = )X
Ruitk) 7rf |(x +2+X>Bm(x)1+a(k)x+x2’
(A3)
aw):z(%%i§;>. (A4)

To simplify matters we shall assume a partition 7, :
— 1<x, <x, <... <x,< + 1 of uniformly spaced knots.
Consider the interval between two adjacent knots [x,,x, . | ]
with spacing 2 = (x; , | — x,). The four cubic B splines over
this interval are

3
B, (x)= — S ob,x, =i —Loi+2 (A5

24h* <~

where coefficients b,, are defined with the knots
X; 3y Xi 1y X, 3 DY

b, 1o =x}1+ o b= “3x?. 1
b 1, =3x,,y, b a=—1,
b= —Ix; 2x?+] +‘xi'x/2+2 + X X Xig2)s
b =xi, +x X X+ 20X,
FX X XX X X
b= —(x; ,+x_ | +x+3x,, +3x;, 5},
b,=3,
bi 1o =X XX, +x?—lxi+l +x2ixi—+ 3o
by, = — X XX+ 2x; 1Xig XX
+ X7 XX+ 2xX;5),
biyi2=3x 34X, + XX,
biyia=— 3,
bi+2,() = —X?, bi+2.l :3)‘?3
b 22= —3x; b ,=1. (A6)

After substituting Eq. (AS) into Eq. (A3) we obtain

halk) = —— 3 c-Lfm'
nl 24/14 L~ Lr J L,
¥ i l.it2, (A7)
1+ alk)x +x°
where
¢, 1 =byg, ¢co=2b,+0b,,
Ci = b + 2b,, +b,, c,=b, + 2b,, + b4,
€y =b, +2b,5, ¢ =05 (A8)
We now write Eq. (A7) as the sum
1 4 . .
hylk)=—— cglk), I=i—1,.,+2,
ik) 24/14r:§’1 8K )
(A9)
where
1 (™ dx
k)= — X — Al10
&:ik) 17'J;, 1 + alk )x + x* (AI0)

To determine the integrals in Eq. (A10), reference can be
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made to standard tables of integrals.'®* We find that

golk)= %(ﬁiﬂ—z—) arctan [(i_tﬁ—z)(%a(k) +h )] ,

(A11)

2kp 2k
(A12)
and for r>1,g, is given by the recurrence relation
1 h”
g,(k)=~7T—7—a(k)g,_l(k)—g,fz(k)~ (A13)
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A refinement of the Thomas-Fermi approximation for the N body problem

Joseph G. Conlon

Department of Mathematics, University of Missouri, Columbia, Missouri 65211

(Received 3 February 1981; accepted for publication 7 October 1981)

The author suggests a refinement of the Thomas—Fermi approximation for the ground state
energy E for an N electron atom. It is known that £, can be written asymptotically as N— o as
E, ~aN " where a is given by Thomas—Fermi theory. It has been further conjectured that this
asymptotic formula may be refined to Ey ~aN /> + BN ®'* 4+ yN>/3. Suggestions for the
contributions to SN ¢/* and ¥ N °/ have been made by Dirac and Von Weizsicker. Here the author
uses known results on short-time asymptotics for diffusion equations to obtain a refinement of the
Thomas—Fermi approximation which includes the Dirac and Von Weizsacker corrections. He
also obtains new terms. These are related to the scalar curvature of the Jacobi metric

corresponding to the Thomas—Fermi potential.

PACS numbers: 31.20.Lr

1. INTRODUCTION

We are concerned with finding approximations to the
ground state energy for an N-electron atom where N is a
large integer.

Suppose there are k nuclei with positive charges Z,
fixed at points R,€R’, respectively, 1<i<k. The total poten-
tial at a point x€R> due to the nuclei is — ¥ (x), where

k Z,

Vi(x) ’Z’] xR (L.1)
Next we introduce X electrons, each with charge — 1 and
mass m, moving in the field of the potential — ¥ '{x}. Let x;,
€R? be the position of the ith electron and o, = + 1 be its
spin, 1<i<N. Then the N electron wave function ¢ may be
written as Yy=(x,,...,Xy; 0,....0y ), where gL * (R*Y; C*").
Let 57, be the Hilbert space of all such 3 which are antisym-
metric in the (x;, o;), 1<i<N. By Pauli exclusion 5 is the
state space for the N electron system. The corresponding
Hamiltonian H is given by

Hy= —h 817'2m_'2A —ZV(x

i=1 i=1
+ 3 el (1.2)
i<j=1
with & being Planck’s constant and 4, the Laplacian in the x;
variable, 1<i<N. If , ) denotes the inner product on 77
then the ground state energy £, for the N electron system is

Ey = inf{(y, Hyd): ¥y, 9] =1} (1.3)

One method of approximating E is to limit the class of
functions €57, over which one minimizes in {1.3). Thus by
restricting ¥ to antisymmetric products of single-particle
wave functions ¢,(x,, @,),....¥x(xy, Ox), One obtains Har-
tree—Fock theory.' If ¢/,,...,¥y€5”, form an orthonormal set
of real functions and ¥ is the corresponding N electron
wave function then (¢, Hy¥) = €4(¥,,...,¥n), Wwhere

eqr =K +4+ R+ Ex. (1.4}
The kinetic energy K is given by

K@t = h2E7m) 'S 3

i=lo= +1

[Vl/f (x, 0)])%dx.(1.5)
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The other terms on the right in (1.4) can be expressed as
integrals of the two-body density p(x, g; y, 0’), where

N
pix, 0 3,0V = S ilx, OWly, o')x, R, 0,0" = £ 1.
i=1
(1.6)
Thus letting p(x) be the one-body density,
px)= 3 plx,0; x,0), (1.7)
a= +1
the potential energy 4 due to nuclear attraction is
Alp. V)= = [ plol¥ sl (1.8)
&
The potential energy R due to electron repulsion is
J f PIPY) 4y g, (1.9)
wlw |x —
The nonclassical exchange energy Ex is
Ex(¢y,-...¥)
. #1312
2{;,17':i] R'VR |X—y|

The Hartree—Fock theory then yields the approximate value
E N(HF) for the ground state energy, where

Ey(HF) = lnf{EHF (@15 ty ), €96, (¥, ¢,) = 51,‘}‘
(1.11)

Evidently £, <E,(HF).

 As a further approximation one tries to express the ki-
netic and exchange energies in terms of the one-body density
plx) alone. Hence, since 4 and R are already expressed in
terms of p{x) the total energy, ey is a functional of p{x)
alone. To approximate £, one then has just to minimize eyy
over all functions p(x) such that

plx)>0, xeR?, J plx)dx = N. (1.12)
"

To approximate the kinetic energy in terms of p(x} et us
think of p(x) as being a fixed function satisfying (1.12) and
regard (1.7) as a constraint on the wave functions ¢,,...,¢y.
Let K, (p) be the minimum Kkinetic energy {1.5) subject to
the constraint (1.7). Then if we assume following Thomas

© 1983 American Institute of Physics 184



and Fermi® that a volume 4 ? in the classical phase space can
accomodate exactly two electrons we find for K, ( p) the
value

Koin(p) = 2 cJ pixP’* dx (1.13)
5 Jr
with ¢ given by
c = h?¥2m)='3238m) 23 (1.14)

To approximate the exchange energy in terms of p(x)
one needs to express the two-body density (1.6) approximate-
ly in terms of p(x). Dirac® achieved this by using a formal
analogy between classical observables and quantum obser-
vables. His value for the two-body density p(x,0; y,0) is

pix, 03 3, &) = 1p € 2173 ) 18,,,  (1.15)
where & = (x + y)/2, 7 = (x — y)/2,6,, =0, 1 according as
o#0' or 0 = o', respectively. The function g(z) is defined by
(1.16)

Substituting (1.15) into (1.10) one obtains the exchange ener-
gy in terms of p(x) as

glz)=2z"3[sinz —zcosz].

Ex = — 3%z~ 134~ p(x}*/ dx. {(1.17)
R

It was not until recent years that the nature of the ap-
proximations (1.13)and (1.17) for kinetic and exchange ener-
gies was understood. In Ref. 4itisshown that K, ( p) witha
different value of the constant ¢ is a lower bound for kinetic
energy. Lieb and Oxford prove in Ref. 5 that the Dirac ener-
gy (1.17), again with a different constant, is a lower bound for
exchange energy. Here we are more concerned with the re-
sults of Ref. 2 where it is shown that kinetic energy converges
in a certain asymptotic sense to K. { p) with the constant ¢
of {1.14) as the number of electrons N— 0. To explain this
we consider the Thomas—-Fermi energy €1 ( p, V') defined by

ere(p V)=Koinlp)+4(p, V) + R(p) {1.18)

where 4 (p, V') and R ( p) are given by (1.8) and (1.9), respec-
tively. The corresponding minimum energy for the A elec-
tron system, €, (V), is
eV = infler (o1 )
p(x)>0, peL S*(R3), | plxidx =4 ] (1.19)
R,‘

It is known? that there is a unique minimizing p for (1.19)
provided

A< ﬁ:Z,:Z. (1.20)
The min‘i;nlizing plx) satisfies the Euler equation
cplx)*'* = max[4, (x) — ¢, O], (1.21)
where ¢, (x) is given by
¢,(x)=Vix)— _PU)_ dy, (1.22)
R |x —

and ¢, is a non-negative constant. Thus — ¢, (x} is the total
electrostatic potential at x due to nuclei and electrons. The

constant — ¢, may be interpreted as the maximum energy of
an electron in the system. Let pr (x) be the minimizing func-
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tion for (1.19), and for N>1 let ¥ (x) be

Vyix)= N2V (N V%), (1.23)
Then N *pr(N '/*x) minimizes € ( p, ¥y) subject to
plx)dx = AN. (1.24)
R‘l
It follows that
enVa) =N, (V). (1.25)

Next let E, (V) be the ground state energy (1.3) for the AN
electron system with nuclear potential — V. It is known?
that

EnVy) =N, (V)+ 0N, N—ow. (1.26)

Hence the Thomas-Fermi energy approximates the quan-
tum mechanical energy in a definite asymptotic sense. Note
thatifk = 1,4 = Z = 1, then E, (V) is the minimum ener-
gy of an N electron atom.

It has been conjectured, based on calculations for the
hydrogenic atom,® that the asymptotic formula (1.26) may be
refined to

EnVy) =N (V) +aN®? + BN +o(N*"),

N—>w.

(1.27)

Thus on substituting p(x) = N %01 (N '/3x) into (1.17) we see
that the exchange energy should make a contribution to 8.
Von Weizsicker’ argued that kinetic energy also makes a
contribution to 2 by suggesting that X can be written more
accurately in terms of p(x) as

K =Koin(p) + Cyy f (V p'/?dx,
Rl

where C, is a positive constant. The actual value of the
constant C,, seems to be in some doubt.® If we substitute
p(x) = N2pe(N *x)into (1.28) then it is easy to see that the
Von Weizsicker term is order N /3 provided

f (Vpl2Pdx < .
R!

The aN ®/3 term was first suggested by Scott,® who claimed
that a should have the same value as for the hydrogenic atom
since the N %/ correction is caused by the singularities of the
potential (1.1). Since the density p1y (x) corresponding to
(1.1) satisfies prx (x) ~(Z; /c|x — R;|)*'* as x—R,, 1<i<k,
the integral (1.29) is not finite. Therefore we might expect the
Von Weizsécker term to make a contribution to « as well as
3. This has been shown to be the case by Lieb.'°

In this paper we intend to pursue Dirac’s idea of asso-
ciating a two-body density with a one-body density function
p(x). Then this two-body density will be used to calculate the
total electronic energy in terms of p(x). Our starting point is
the Thomas—Fermi equation {1.21). Classically an electron
in the system moves under the potential — #,(x). Hence, if g
is the Euclidean metric in R?, an electron with maximum
energy moves along a geodesic in the Jacobi metric
[#,(x) — dolg. From (1.21) this metric is just p(x)*’°g. Qur
idea is to choose the eigenfunctions of the Laplace operator
on R? in the metric p(x)?/?g to form the two-body density
associated with p(x).

(1.28)

(1.29)
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Let p(x) be a suitably smooth function which is positive
for all xeR* and such that

J;Jp(x)dx =N

We regard R® as a Riemannian manifold M with metric
p(x)*3g. Hence the Laplace operator Q on M is given by

— @ =plx)~'V-{p(x)'/*V). (1.31)
We assume that Q is essentially self-adjoint on M with pure
point spectrum. Then Q has real eigenvalues 4,/ =1,
2,...,with 0 <4, <4,<45<... and corresponding real eigen-
functions ¢;(x),j = 1, 2,.... If N is an even integer we define a
set of functions ¢,,...,¢y €7, by

1/’,‘(": o) =p(x)1/2¢j(x)6y, 10

Yy innl¥ 0) =px)'?8,(x)6,, _1, 1<KN/2. (1.32)
Since ...,y ,, form an orthonormal setin L *(M ) it follows
that ¢,,...,¢¢5 form an orthonormal set in 7#°,. We then de-
fine the two-body density associated with p(x) by (1.6).

Our aim here is to show that when we use the functions
(1.32) to compute the Hartree-Fock energy (1.4) we obtain
the semiclassical approximations (1.17) and (1.28) in a cer-
tain asymptotic sense as N— oo . In Sec. 2 we show that the
Hartree—Fock energy approaches the Thomas—Fermi ener-
gy to order N /3. This corresponds to (1.26). We also show
that the Hartree-Fock exchange energy approaches the
Dirac exchange energy to order N /2. In Sec. 3 we derive
heuristically a refinement of the Thomas-Fermi approxima-
tion which includes the Dirac and Von Weizsicker correc-
tions. We use an attractive nuclear potential which smooths
the Coulomb singularity. Hence the refinement does not
contain a term aN ©/? as in (1.27).

Our method of approach in this paper is to use known
results on short time asymptotics for the heat equation asso-
ciated with Q. In Sec. 2 we consider smooth compact mani-
folds for which rigorous results are known.'' In Sec. 3 we
assume that the results for the compact case extend to the
noncompact case.

This work is a direct extension of the March and Young
work'? for the one-dimensional case. In the one-dimensional
situation it is possible to write down the eigenfunctions of the
Laplace operator explicitly,'* which leads to considerable
simplification.

(1.30)

2. THOMAS-FERMI AND DIRAC EXCHANGE ENERGIES

Let 2 C R’ be a bounded open set with smooth bound-
ary 012 and
p: 2—R (2.1)

be a C = function on the closure £ of £2 such that px)>0,
xef?, and

Jp(x)dx =1 (2.2)

We regard £2 as a Riemannian manifold M with the metric
p(x)*'*g. Hence M is a C * manifold of unit volume and with
smooth boundary M. The Laplace operator ¢ on M is de-
fined by (1.31). Let Q,, be the self-adjoint extension of Q in

L (M ), which corresponds to Dirichletboundary conditions.

186 J. Math. Phys., Vol. 24, No. 1, January 1983

For ¢> 0 the operator exp{ — ¢Q,,) is a real symmetric com-
pact integral operator on L M ) with kernel G (x,p,t ),x,yef2.
The function G (x,p,t )isin C = (2 X2 X (0, «))and for each
t>0G (x,p,t)isinC '(2 x 2 )suchthat G (x,y,¢) = 0if xe312.
The operator @, has pure point spectrum with real eigenval-
uesA;,j=1,2,..,suchthat 0 <4, <4,<A;<--. We write the
corresponding real normalized eigenfunctions as ¢;(x),
J = 1,2,---. Each function ¢,(x) is in C *(£2 )nC 1(42) and
#;(x) = 0 if xedfd.

For positive even integers N = 2, 4,..
functions y¥,, y¥s.-sn ¥n» bY

N‘éj(x’ 0)___N1/2 (Nl/3 )l/2¢ (Nl/3X)(Sa .
vYjsnpalX, o) = NN Px)! g (N 1 Bx)s

L/KN /2. (2.3)

., we define a set of

Itis easy to see that the functions y#;, 1 /<N, are the single-
particle wave functions associated to the one-body density
N ?p(N '/*x) by the prescription (1.32). We extend the
~¥;(x, o) to R’ by setting 5 ¢,(x, o) = 0 if xeR> — £2. Thus
the functions ,#;, 1<j<¥, form an orthonormal set in the
space | and we can also see that each ~Y;(x, o) is in the
Sobolev space H '(R?). Let p  (x) be the one-body density as-
sociated with the y#;, 1<j<N, so

o= 3 S [hiix ) (2.4

o=+ 1j=1
We prove the following result

Theorem 2.1:

(a) Illfn N 773K (w1 eon¥n) = Konin (),

(b) Lim N "4 (py, Vy)=4(p, V),
(c) lim N~""Ripy)=R(p).
Proof' (a) We have

N PR (y o ¥in)

= h*4r*m)”~'N ~3° zj.[Vp(x)”zqﬁj(x)]zdx. (2.5)

j=1JQ

Let I (n) be given by

= 3 | [Vl ) (2.6)

On using the identity

$08 =108> +p (Vo )%, (2.7)
we see that

I(n) = I\{n) + Iy{n) + I3(n) + Ln), (2.8)
where

Iin)= 2 /l (6. (x)p(x)*3dx, (2.9)

Iyn)= " f Q¢ Hx)p(x)*'*dx, (2.10)

Iin) = 2 (Vp” Y, (x)dx, (2.11)
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Vp-Vé (x)dx. 2.12
,; AL ¢ ix) (2.12)

We now use the well-known identity
Giext)= e 4,(xP, xe0, 1>0. (2.13)

i=1

We may differentiate (2.13) with respect to ¢ to obtain

— Srbext) = S e M0, 0,(xP. (2.14)
i=1
If we integrate (2.14) against p(x)’’> we have
G 5/3
— == (x,x,t )olx)""dx
| - ot
“"f,z #.(x)0lx) *dx. (2.15)
i= l
On using the asymptotic formula, '
— 96 ext)~ 2 (ame) 2 10, (2.16)
ot 2t
we see that
lim IS/ZJ _ 96 (e, x,t Jo(x)*dx
+—0 n a
-2 77“3/2fp{x)5/3dx (2.17)
16
Let n{4 ) be given by
= #{A;: <4} (2.18)
Then Weyl’s theorem'” yields
limA ~32pd) = (677)". (2.19)

A—+o
From (2.15) and (2.17) we obtain via the Karamata Tauber-
ian theorem'®

llm/l —S2L(nd)) = (1077~ f pixy%dx. (2.20)

This asymptotic formula may be rewritten using {2.19) as

limn =32 (n) = = 62/3 "/3fp(x)5/3dx (2.21)
Next we define /;(n) by
Is(n) = Z ¢ 1x)1Q p*"*(x)]| p(x)dx. (2.22)
i=1
It is obvious from (2.10) on integration by parts that
[ Ly(n)[<Is(n). (2.23)
From (2.13) we have
1
[ smnioprt ) pixiix
n
=S¢ 1| o110 pw) ptvia. 224)
= £7]
If we use the asymptotic formula'*
G (x,x,t)~(dmt) ™32, 10, (2.25)
we have that
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lim t”zf —;—G(x,x,t)|Qp2/3(x)|P(x)dx
2

t—0

23(x)| plx)dx. (2.26)

Thus from (2.23), (2.24), and (2.26) and Karamata’s Tauber-
ian theorem we conclude that

limn =3 (n) = 0. (2.27)
Similarf;/ we conclude that

lim n=>"3I4(n) = 0, (2.28)

limn=33I,(n)=0 (2.29)

n—wo

The conclusion of (a) then follows from (2.5), (2.8), (2.21), and
(2.27)—2.29). (b) We observe that

N4 (py, Vy)=2N "~ 'ij Vixp(x)é Hx)dx.  (2.30)
- We put
J(n)= z V (x) plx) 2(x)dx. (2.31)

i=1
Suppose that 2 contains the singularities R ,...,R, of ¥V (x)in
its interior. From (2.13} we have

f G (x,x,t \V (x)p(x)dx

= ,Zle A J (x)p(x)é 2(x)dx. (2.32)
From (2.25) it follows that
11m t”zf G (x,x,2 )V (xjo(x)dx
_ LV(x)p(x)dx. (2.33)

By the Karamata theorem it follows from (2.32) and (2.33)
that

}im/i 32 (n(d ) = (6714 (p, V). (2.34)
Hence from (2.19) we have
limn=U(n)=4(p, V), (2.35)

n— oo

from which (b} follows. Before turning to (c) we prove a slight
generalization of the Karamata theorem.

Lemma 2.2: Let m be a positive Borel measure on the
quadrant [0, ) X [0, o0 ) such that

f f e~ @ mlu, v) <
a (8}

for a, >0, and b (u, v) be a nonnegative Borel measurable
function on [0, & } X [0, 0 ) with

J. f e ™+ Py, vidu dv <
0 (V]

{2.36)

(2.37)
if &, B> 0. Suppose there is a ¥ > 0 such that
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11m t Vf f — @+ Bl (u, v)
= J- J. e @+ P (y vidu dv
0 0

for all a, 8> 0. Then

(2.38)

lima—"m{[0, 2] X [0, a]} = flfb (u, v)du dv. (2.39)

a—ow

Proof. Define a family of measures m,, ¢ >0, by

md)=1t"mit "'A4), (2.40)
where A CR?® is a Borel set. Then (2.38) becomes
llmf f — e+ Bdm, (u, v)
= f J e =+ A (y, v\du dv (2.41)
0 JO
for all @, 8> 0. Since the family of measures
W+ 9dm, (u, v), >0, (2.42)

is uniformly bounded we can conclude from (2.41) and the
Stone—Weierstrasse theorem that for every continuous func-
tion f: [0, o0 ) X [0, oo )= R? which disappears at oo,

hmJ. f Slu, vie =" dm,(u, v)

- f f (1, vle =+ b (u, v)du dv. (2.43)
From (2. 43) it is easy to see that

11m dm [u,v)= flflb (4, v)du dv, (2.44)
and (2.44) is equivalent to (2.39).

Proof of (c): We have
N=""R(py)

=2 [ plebot) S 621020 l"" 22 v e
For a, B, t > 0, we consider
[ fprevieicraric vy L2 ©

= f J e~ e+ Bligmy, v), (2.46)
where

—_ 2 2 dx dy
m)= 3 [ [ oot 2L e

Ao ,)eA
for every Borel set A C R%. From (2.25) we conclude that

hm t f f —leu+ B gm(u, v)

= (aB)*"*(4m)7°R (p). (2.48)
Using the fact that

f f e~ (@ + B ) 2y dy = T (aB)? (2.49)

0 (¢] 4

and Lemma 2.2, we see that

188 J. Math. Phys., Vol. 24, No. 1, January 1983

}imi Sm{[0,A1X[0,41}=(6)""R(p). (2.50)

Then (c) follows from (2.50) and (2.19).

As a corollary to Theorem 2.1 we may prove part of
(1.26).

Corollary 2.3:

lim N ~7°E,

N— o

vVyl<e V),

where N goes to o through integer values of AN.

Proof: Since each function y ¢, (x,0) of (2.3) is in H YRY)
and the exchange energy is negative we conclude from
Theorem 2.1 that

lim N ~7"E,y(Vy)

N—eo

<A7P[Knl(p) +A4(p,V 1,2) + R (p)]

= eTF(p", V), (2.51)
where p* (x) is defined by
ptx) =4 2p(A ' 3x). (2.52)

One can easily see that it is possible to choose a sequence of
functions p;(x), i = 1,2,..., satisfying (2.1) and (2.2) such that

_limfﬂr(P?{’ Vi=eV)

This completes the proof of the corollary.
Next we consider the exchange energy.
Theorem 2.4:

(2.53)

hm N _5/3EX(N¢I"-UN¢N) =

Voo

-~ 34/37~1/34—1X(p)’

where X ( p) is given by

X(p)= Lp(x)‘*”dx. (2.54)
Proof: We have

NASBEX(N'/’U---»N?/’N)

N —4/3 dx dy

= N[ [ ot 3 00600, e ) =

For ¢ > 0 the Green’s function G (x,y,t ) is given by

Glpt)= 3 e "8,08,),

i=1

(2.56)

where the series on the right is absolutely convergent. Hence
if a, B> 0, then
dxdy

[ [ prpticmparcinsn 22 e

= f J e (au *B””dm(u, v),
0 Jo

where

mid) = f L (il (X1 )6, (el (12222

h /l)eA

(2.57)

x — I
(2.58)

for every Borel set A C R Since the function |x| ™' is positive
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definite it follows that m is a positive measure on
[0,00) %[0, ). We now use the asymptotic formula'' for

G (x,p,t),
G(x,y,t)~(4m)“3/2exp[ — %}:,y) ], t—0. (2.59)

Here d (x,y) is the Riemannian distance from x to y in the

metric p(x)*/?g. Thus for y close to x we have
d*(x, y)~plx*"*|x — y|*. (2.60)
We conclude that
lim ¢ JJ pxIpW)G (x.y,at )G (x,y,Bt ) Id" & p
—tim ¢ ~'t47ap )" [ plar
t—0
o213
Xexp[ (x) (@ "+B")]rdrdx
1 1
X(p). (2.61)

" 87 (@B) 7 +B)
In order to apply Lemma 2.2 we need to find a positive
function f'(u, v) on [0, 0 ) X [0, 0 ) such that

fw f T~ @By, vldu dv = (aB)~ e + B)

(2.62)
for all a, B> 0. We put
F,(v)= fwe ~%“f(u, v)du. {2.63)
Hence (2.62) becomes
LF,B)=(@B) a+B)"", B>0 (2.64)

where .#” denotes Laplace transform. On using the convolu-
tion theorem for Laplace transforms we conclude that

F_(v) =Je“"”
0

For0<w<v< « and u >0 let 4, () be defined by

~Yraw)” ' 2dw. (2.65)

Bowlt) =7 Lo — v—w)]-" if us v—w,

(2.66)

=0 fug v—w.

It is evident that
ZLh, Ja)=e
If we put £, (u)

~Yraw)~'?, a>0. (2.67)

= f(u, v) then (2.63) may be written as

F (v)=YZf,(a), a>0. (2.68)
From (2.65) and (2.67) we deduce that

folu)= f h, ,(u)dw. (2.69)

(]
Evaluating the integral in (2.69) we obtain
1/2 1/2
flu,v)= S| LTV ] (2.70)
T | — v
and an elementary calculation yields
1 ~1
J.J-f(u, v)du dv = i (2.71)
0 Jo wT
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Now from (2.57), (2.58), (2.61), and Lemma 2.2 we con-
clude that

Alimli “2m{[0A]1X[04]}=

Hence from (2.19) and (2.55) we obtain the result of the
theorem.

@)X (p).  (2.72)

3. REFINEMENT OF THOMAS-FERMI THEORY

We have seen in Sec. 2 that by choosing the functions
(1.32) to form the two body density we obtain the semiclassi-
cal approximations (1.13) and (1.17). Here we again use these
functions to obtain the refinement (1.27) of the Thomas—
Fermi approximation.

We consider a modified atomic potential V' (x) defined
by

LIV, (3.1)
® [x — |
where A: R*>R is a non-negative C © function which is
spherically symmetric and has support in a region |x| <€
such that

f h(x)dx = 1. (3.2)
|x| <€

Thus ¥V (x}is a C = spherically symmetric function such that
V(x) = |x|~'if |x| >€. Let prg(x) be the neutral Thomas—
Fermi density associated with ¥ {x). Hence pp(x) satisfies
(1.21) and (1.22) with ¢, = 0. If € is sufficiently small then
prr (%) is a strictly positive C * function in R and is spheri-
cally symmetric. We regard R> as a Riemannian manifold M
with the metric p1(x)*/’g. Let Q be the Laplace operator on
M and Q,, be the Friederichs’ extension of Q to L %(M).

Theorem 3.1: Q,, has pure point spectrum.

Proof: Since px (x) is spherically symmetric we may by
introducing spherical harmonics reduce the problem to a
one-dimensional one. For/ = 0, 1, 2,..., let Q ' be the operator
on functions with domain O < 7 < « defined by

Vix) =

s d I+ 1)
) T o
(3.3)

Evidently Q' is formally self-adjoint and positive on the
space L %[(0, o0 ), prr (F)r?dr]. Let Q' be the Friederichs’ ex-
tension of Q'. We need to show that Q §, has pure point
spectrum for /=0, 1, 2,... .

We proceed in the standard manner.!” We make a
change of variable r«»s given by

ds

—1 1
Pre(r

- —
Q= Pos(r) dr dr

o Ppre(r). (3.4)
In the s variable the operator Q' becomes
—d d
L S ]
I pls) I + q,(s), (3.5)
where
pls) = rprr ()3, (3.6)
q,(s) =1{l + Vpre(r)~2>r 2 (3.7)

Defining s by
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S = rrzpw(r)dr, (3.8)

we see that 4  is formally self-adjoint on L %(0, s_ ) and its
Friederichs’ extension A4 |, is unitarily equivalent to Q /.
We make a further change of variable s«»> by

% = i) (3.9)

Let ¢ be given by
t, = J “pls)~ 2.

0

We define a unitary transformation % from L %0, s_ ) onto
L*0,1,)by

(3.10)

Uglt)=glsle))s'(t)'%, geL*(0,s,,). (3.11)
In the ¢ variable the operator 4 ' becomes
d 2
B'= — n + v, (t), (3.12)
where
vilt) = quls) — &[p'(s)*/pls)] + §p"(s). (3.13)

Thus B 'is formally self-adjoint on L %(0, ¢ ) and its Frieder-
ichs’ extension B ) is unitarily equivalent to Q4.

We show that B'is essentially self-adjoint with pure
point spectrum if /> 1. To do this we need to use the fact'®
that

. d \m af d 7" _
tim( ) errin=212( £ ) m=o12,
(3.14)

where we have taken the constant ¢ in (1.21) to be 1. From
(3.14) we deduce that ¢, < « and that

vilt)~l{l+ W, —1)72 >t (3.15)

Using the fact that p;(r) is C * at r = O we also see that
Vi)~ + 1)+ 1] 7% 0. (3.16)

From (3.15) and (3.16) we see by an application of Theorem
6.23 in Chap. 13 of Ref. 17 that B 'is essentially self-adjoint if
/> 0. By Theorem 7.17 in Chap. 13 of Ref. 17 it follows that
B/, has pure point spectrum for /> 0.

We must deal with the case of B/ for / = O separately. In
that case we apply Theorem 5 of Ref. 18 to deduce that

lim sup|(z, — #)*v(t)| =0. (3.17)

x

It follows then from Theorem 6.23 of Ref. 17 that B ® has two
boundary values at z_ . Hence by Theorem 6.12 in Chap. 13
of Ref. 17 the endpoint 7 does not contribute to the essen-
tial spectrum. Just as for /> 1, neither does the endpoint 0
and so we conclude that B $, has pure point spectrum. This
proves the theorem.

Corollary 3.2: Let ¢ (x) be an eigenfunction of @, and
put ¥(x) = [o1e(x)]'/% ¢ (x). Then ¥(x) is in the Sobolev space
H'(R?).

Proof: Since ¢ (x) is an eigenfunction of Q,, it follows
that

fpw(xm (xdx < oo, (3.18)
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L Prelx) [V (x)dx < oo, (3.19)

The result now follows from (3.14).
We wish to investigate the behavior of the eigenfunc-
tions ¢ (x) of @, as x— 0. To do this we need some lemmas.
Lemma 3.3: Let ¢: (0,1]>R be a continuous function
such that

lim t%(t)=a, (3.20)
+—0

where a >3, and u(t), 0 < < 1, be a solution of the equation

u"(t) = qlt)u(t) (3.21)
such that
1
J ultdt < . (3.22)
0
Then there is a constant 4 > 0 such that
lu'(t)|<d4, |u(t)|<4:, O<t<l. (3.23)
Proof: Choose € with 0 < € < 1 such that
’q(t)>3, O<t<e. (3.24)

Suppose u(€) > 0, u'{€) < 0. From {3.21) we see that u{z ) is con-
vexforO < r<eandsou(t)>0,0 <r<e. Letv(t),0 < 1<¢, satis-
fy the equation

v(t)=3r "7u(t), (3.25)
with the initial condition

vie) = ule), v'(e)=u'(e). (3.26)
It is easy to see that

O<u(t)<ult), O<t<e. {3.27)
We may solve (3.25) explicitly to obtain

vt)=c,t3? 4 et V2, (3.28)

where ¢, and ¢, are constants. Since v(€) and v'(€) have oppo-
site signs we must have ¢,7#0. Consequently

fev(t Pdt = o,

o

(3.29)

and from (3.27) it follows that (3.22} does not hold.

Wemay thereforeassumethatu(z) > 0,4'(t) > 0,0 < t<e.
In view of (3.21) »'(¢ ) is increasing for 0 < ¢ < €. Hence lim,_,
u'(t) exists. From this fact we may easily deduce the inequal-
ities (3.23).

Lemma 3.4: Let ¢: (0,1]>R be a continuous function
such that

lim t%g(t)=0 (3.30)
—0
and u(t), 0 < < 1, be a solution of
u"(t) = qlt)ulr). (3.31)
Then for any 6 > O the following inequalities hold:
lim sup|z°u(t)| < o, (3.32)
10
lim sup|t' "%u'(t)] < . (3.33)
+—0
Proof: Similar to Lemma 3.3.
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Theorem 3.5: Let ¢ (x) be an eigenfunction of Q,,. Then
¢ (x)ia a C = function such that for any & > 0 the following
inequalities hold:

lim sup|x| ' ~°|# (x)| < o0, (3.34)
lim sup|x| ~°|Vé (x)| < oo. {3.35)

Proof: Follows from Lemmas 3.3 and 3.4.

In order to obtain the refinement of Thomas—Fermi
theory we must make several important assumptions. For
t > 0 the operator exp{ — ¢Q,,) is a real symmetric compact
operatoron L *(M ). Weshall supposeitis an integral operator
with kernel G (x,,t ),x,yeR>, where G (x,3,t)isin C =
(R*X R*X (0, 0)) and is a fundamental solution for the heat
equation associated with Q. It follows'* that G (x,x,t ) behaves
asymptotically, as r—0, like

G (x,x,t )~ (4t ) 732[1 + (¢ /3)(x) + oft)], (3.36)

for any fixed x€R>. Here «{x) is the scalar curvature of M,
which turns out to be

K(x) = 4o1¢ ()~ p1r (x)l/6ApTF(x)1/6]' (3.37)
Similarly for fixed xeR’, 3G /3¢ (x,x,t ) is given asymptotical-
ly as t—0 by

96 (x,x,t )~ (4mt)~3/?
ot

=3 _ k(x) +o(1)}. (3.38)
Next we assume that the asymptotic formulas (3.36) and
(3.38) are uniform in x to the extent that we may integrate
(3.36) and (3.38) against a continuous function f{(x) over R?,
where f{x) decays like | x| ~® as x— oo . In particular we have

from (3.36) the formula

f G (x,x,t Jprpix)dx

~ (4t ) 721 — (4t /3 + oft)], (3.39)
where J is given by
J= f [Vore(x)'/¢]?dx. (3.40)
.

As in Sec. 2 let @, have real eigenvalues 4;, j = 1,2,..., with
corresponding real eigenfunctions ¢,(x). Then (3.39) is equiv-
alent to

S e ()7L — (42 /3) + oft)]. (3.41)
i=

If n{A ) is defined as in (2.18) then (3.41) and the Karamata

Tauberian theorem yields (2.19). A conjecture of Weyl'® sug-

gests that we may separate out the second term in the asymp-

totic exparsion of n{4 ). In that case n(4 ) must be given by
A )~(6m%) " [A2 232 404 1?)], A— 0.
(3.42)

We shall assume that (3.42) holds.
Now with the notation of Sec. 2 and taking p = p,
2 = R?, we consider

Ki{ntionn) = B H47°m) "N 2PN /2). (3.43)
The function 7 {#} may be written as the sum (2.8) with 1,(n)
and /I;(n) given by (2.9) and (2.11), respectively. From Theo-
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rem 3.5 we may integrate by parts in (2.10) and {2.12) to
obtain

= 3, 5 | 1o prstia, (3.4

Lin = = 32 [ ¢2prician (3.45
We define Borel measures m, M on R by

ml[0, A ) =L(nA)), (3.46)

MI[0,A] =14nlA)), {3.47)

with 5 as in (2.22). It is evident that M is a positive measure
and that the signed measure m satisfies
|[m|<M. (3.48)

Further, by our assumption on the uniformity of the asymp-
totic formula (3.36) we have

lim ¢ 3“[ e~ Mdm(A)
(4]

—0

= (477')_3/2% J;](QPTFZ/S)pTF (x)dx
=0, (3.49)

lim ¢ ["e=ram2) =2 L[ 10ptelpre o
0 R

£-=0

(3.50)

We would like to conclude from (3.49) and the Karamata
theorem that

limA ~32m[0,A]1=0.

A—oo
Since m is not a positive measure we cannot apply the Kara-
mata theorem directly. However, from (3.48), (3.49), (3.50),
and the proof of the Karamata theorem we see that (3.51)
holds. Thus

(3.51)

lim A ~3/2I,(n(1)) = 0. (3.52)
A soo

Similarly we see that
limA —*2I(n(1)) =0, (3.53)
A soo

and by direct application of the Karamata theorem we con-
clude that

lim A =L n(d) = (6772)4] (Vpl)dx. (3.54)

We wish to estimate 7, (n(4 }) as A— o to order A *2. To
do this we use the identity
% fxxt Yo (x)"

Jwe ~AdI(n(A)) = J —
’ : {3.59)

Making the assumption that the asymptotic formula (3.38) is
uniform in x we have from (3.55)
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f " e~ 4dI,(n(d))

—3/2,—-5/2 5/3
~&T t J preixy’7dx
R'l

_ ‘1'877_3/2t —3/2L + O(t -—3/2)’ (356)
where L is given by
L =f (Vore /2 dx. (3.57)
R.‘

In analogy with the Weyl conjecture which led to (3.42) we
shall assume by virtue of (3.56) that I,(n(4 }} is given to order
A 3/2 by

1)~ (10742 [ prolx)*an

— &L 4 01?2, (3.58)

We may now estimate / (1) as n— oo to order n by using
(3.42), (3.52), (3.54), and (3.58). We obtain

I{n)~[ }6m)/*n"> + 2Jn) J' prex)*2dx

+ 42Ln + o(n).
Consequently from (3.43) we have

K (Nwl""’N'pN)
~ NP 4+ 10737317~ 3N PIK o)
+ N5/3CWL + O(NS/S)’
where the Von Weizsdcker constant C,, is given by

Cy =h*4rm)~ "4 (3.61)
This value of C,;, differs from the value proposed by Von
Weizsicker.” In fact his constant is 4 *(87°m) ™",

Let V), be defined by (1.23), where the potential V (x) is
given by (3.1), and p (x) by (2.4), where the functions ¥, are
associated with ppg(x). By making assumptions on the uni-
formity of the asymptotic formula (3.36) and assuming a

Weyl-type conjecture we can estimate 4 ( o, V) to order
N33 as N— 0. We obtain

(3.59)

(3.60)

Alpw, Vi)~ N7 + 20 37 72N> 14 (pre, V)

+ 2(37’,2)—2/3N5/3LJVPTFI/GAPTF l/6dx 4 O(NS/S)'

(3.62)
In a similar fashion we have
R (PN)"' [N7/3 + U(3ﬂ2)_2/3N5/3]R (pTF)
+ 4(372)_2/3N5/3J‘ pTF(xlo‘ll'/I?(y)Ap'll‘/Fs(y) dx dy
R*JR® |x — i
+o(N37), (3.63)
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We conjecture that the asymptotic formulas (3.60),
(3.62), and (3.63) are correct and that Theorem 2.4 may be
extended to the case of p = p. It then follows from Corol-
lary 3.2 that we may obtain a refinement of Corollary 2.3,
namely,

Ey(Vy)SN€,(V) + BN 4+ o(N>73), (3.64)

where €,(V) is the Thomas—Fermi energy for the atom with
nuclear attractive potential (3.1), and B is the sum of the
terms in (3.60), (3.62), and (3.63) of order N /3 plus the ex-
change energy.

Remark 1: The main obstruction to proving the asymp-
totic formulas (3.60), (3.62), and (3.63) is undoubtedly the
Weyl-type conjectures which we have assumed. Even for the
Euclidean Laplacian in a bounded domain the Weyl conjec-
ture has been verified in only a few cases.'®

Remark 2: If instead of the potential (3.1) we had taken
the Coulomb potential ¥ (x) = |x| ' then Theorem 3.1
would still hold but Corollary 3.2 would not. We might ex-
pect this tobe the case to account for the term aN /3 of (1.27).

ACKNOWLEDGMENTS

I wish to thank Percy Deift for his encouragement of
this research. This research was supported by a University of
Missouri Alumni Award and NSF Grant No. MCS
8100761.

'E. Lieb and B. Simon, Commun. Math. Phys. 53, 185 (1977).

’E. Lieb and B. Simon, Adv. Math. 23, 22 (1977).

3P. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).

“E. Lieb and W. Thirring, Phys. Rev. Lett. 35, 687 (1975); Erratum: Phys.
Rev. Lett. 35, 1116 (1975).

SE. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 {1981).

®N. March, Adv. Phys. 6, 1 (1957).

’C. Von Weizsicker, Z. Phys. 96, 431 (1935).

8A. Kompaneets and E. Pavlovskii, Sov. Phys. JETP 4, 328 (1957).

°J. Scott, Philos. Mag. 43, 859 (1952).

‘°E. Lieb, “Thomas—Fermi and related theories of Atoms and Molecules,”
Rev. Mod. Phys. 53, 603-641 (1981).

''Y. Kannai, Commun. Partial Differential Equations 2, 781 (1977).

'2N. March and W. Young, Proc. Phys. Soc. 72, 182 (1958).

3E. Lieb, Springer Lect. Notes in Phys. 116, 91 (1980).

“*H. McKean, J. Diff. Geom. 1, 43 {1967).

SH. Weyl, Math. Ann. 71, 441 (1912).

1B, Simon, Functional Integration and Quantum Physics (Academic, New
York, 1979).

'"IN. Dunford and J. Schwartz, Linear Operators (Interscience, New York,
1963).

'3E. Hille, J. Anal. Math. 23, 147 (1970).

'°V. Mikhailets, Russ. Math. Surveys 33, 259 (1978).

Jaseph G. Conlon 192



Functional integrals in Navier-Stokes incompressible fluid turbulence
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A variational principle is formulated for the dynamical evolution of the Hopf characteristic
functional @ = & [y(x), ] by employing an appropriate functional integral over all parameter
fields y(x). It follows that the ratio of functional integrals I" =& *®D(y)/§|® |*D (y) is an exact
constant of the motion during the decay of boundary-free Navier—Stokes incompressible fluid
turbulence. Bearing the physical dimensions of inverse time, the constant of the motion I is a
scalar function of the multipoint velocity correlation tensors embodied in . For statistical
situations such that the probability measure over the velocity-field ensemble is semi-Gaussian
(i.e., the real part of In @ is a quadratic functional of y), I" is evaluated explicitly in terms of the

two-point velocity correlation tensor.

PACS numbers: 47.25. — ¢, 47.10. + g

I. INTRODUCTION

Although the essentially nonlinear, dissipative Navier—
Stokes equation

Au/dt = vVu —u-Vu — p~'Vp, V=0, (1)

u = u( x, ) defined for all x € R;, v, p=positive constants,

does not admit a conventional variational principle, it has
been shown recently that a physical minimum principle can
be formulated for solutions to (1).! However, if one considers
the multipoint velocity correlation tensors of turbulent
flows, there remains an open question regarding the exis-
tence of a minimum or a variational principle for the dyna-
mical evolution of the latter statistical quantities.

In the statistical theory for turbulent incompressible
fluid flows, all equal-time multipoint velocity correlation
tensors are contained in the Hopf characteristic functional®

D =Dyt)= <cxp i f u;(x',t )y, (x')d 3x‘>
=1+ if (u;(x',t )y, (x') d °x

— [ [ et e pm iy wa s

- % ffj. oy (X8 Yy (X7 Jua (X2 )

X,V,-(X’)yk (xlllyl(xll/)d 3xid 3xlld 3xm _+_ ., (2)

the complex-valued Fourier transform of the probability
measure over u. It follows from the definition (2) that & satis-
fies the conditions

D0, )=1, |D (y,t)|<1 )
Py )*=P(~yt) Plyt)=P(y".t)
where y" =y — V~?V(V.y) is the transverse part of the real
parameter vector-field y = y(x). The characteristic func-

tional (2) changes with time according to the linear equation
first derived by Hopf??

* The work reported here was supported by NASA grant NAG1-110.
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& =3P /9t = (F — iS)D, (4)

in which there appear the first-order and second-order time-
independent functional differential operators*

F=v f 3, XIV3(8/6, (x)d *x = F*, 5

9;'tx) d’x=S5* (6)
ox, 5}’,(")5)’k (x)

Equation (4) is a consequence of the fact that every velocity
field in the ensemble evolves according to (1), and the real
operators (5) and (6) manifest the statistical dynamical effects
of the viscous and inertial forces evident in (1). Intertwining
of viscous and inertial effects in Navier-Stokes incompress-
ible fluid turbulence shows up in the nonzero commutator of
(5) and (6),

(F5]= 2vf a;i(:) (5% 5in)) (5% 5yf(X) ) d’x.

(7

In Sec. II a variational principle is formulated for the
Hopf dynamical equation (4) by employing an appropriate
functional integral over all parameter fields y(x). This result
is particularly significant in view of the current interest at-
tached to self-organizing variational principles in lower-di-
mensional and related forms of turbulence.® From this vari-
ational principle displayed below in (20), one obtains the
time dependence of the quantity

@)= [ D)D) 8

by way of Noether’s theorem. It follows immediately that
the ratio of functional integrals of the same type
r=(o,9)/(®,9) (9)
is an exact constant of the motion during the decay of bound-
ary-free Navier—Stokes incompressible fluid turbulence,
dr/dt =0, (10)

as shown by the calculation in Sec. III. Bearing the physical
dimensions of inverse time, the quantity (9) is a scalar func-
tion of the multipoint velocity correlation tensors embodied
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in @ [see (2) above]. In Sec. IV I" is shown to be given exclu-
sively in terms of the two-point velocity correlation tensor
(31) by the integral (34) for statistical situations such that the
probability measure is semi-Gaussian, i.e., the characteristic
funtional takes the form (29) during a certain time-interval of
the decay. Amenable to practical evaluation, the functional
integral concomitants of @ in (9) and (20) provide valuable
new insights into the theory for Navier-Stokes incompress-
ible fluid turbulence.®

Il. VARIATIONAL PRINCIPLE FOR THE ¢ EQUATION

Let an inner-product for complex-valued functionals of
y be defined by

(1), P )= f D%y Dy) (1)

The infinitesimal volume element or measure in (11) is ex-
pressed symbolically as’

normalization)

D(y)= ( I1 [d yix)] (12)

XeR,
and the integration in (11) is understood to run from — o to
+ o for each component of y(x) at all x. Observe that (12)
has the property of displacement-invariance,

D(y + a)=D({y), (13)

where a = a(x) is an arbitrary real vector field independent of
y; in view of (13), finiteness of the inner-product (11) for cer-
tain @, and @, implies that®

oD}, & o 8Dy, Divi=0
2 T 20 (y)=0.
oy, (x) dy;(x)

The adjoints of operators (5) and (6) are defined implicitly by
(¢[1):F¢|2))E(F+¢(1],¢(2))’ (15)

constant

(14)

(‘p(n ’S¢|2) )=(S T(15(11 ,¢(2) ), (16)
and determined by making use of (14),

F'= —F+c, (17)

St =35, (18)
where

cz—3va25(3’(x)|x:Od3x (19)

is a positive real constant.’
In terms of (11) the variational principle for (4) takes the
form

5J“e*"(¢,d§—F¢+iS¢)dt=O (20)

with 6@ and 6P * equal to zero at the terminal times ¢,,#, but
arbitrary (and treated as mutually independent) for

t, < t < t,. Clearly, the 5& * term that arises in (20) vanishes if
and only if (4) is satisfied, while the §& term (obtained by
parts integration with respect to ¢ ) vanishes if and only if

—P*pcP*—FTo* +iSTP*=0. 21)
In view of (17) and (18), (21) becomes
— P L FO* 4 SOP* =0, (22)

194 J. Math. Phys., Vol. 24, No. 1, January 1983

which is just the complex-conjugate of (4). Hence (20} is equi-
valent to (4).

As a consequence of the variational principle (20),
Noether’s theorem applies and takes the form

e~ NDSD)|, =e PP, , (23)

where 89 is the change in the characteristic functional asso-
ciated with an infinitesimal transformation that leaves the
integral in (20) unchanged. The obvious invariance transfor-
mation

PP, D* e PF
gives 8@ = iPda and thus yields

(@,D)], = "~ VD,P), . (25)
Shown in (25), the time-dependence of the quantity (8) can
also be derived by multiplying (4) by @ *, integrating the real
part of the resulting equation over y with the measure (12),
and finally using (17) and (18) to get

4

dt

a = (real constant), (24)

(D,P) = c(P,D). (26)

1. CONSTANCY OF I
It follows from (4) that
(@,9) = (PFD —iSP) = (F1 0,0,
—(SP,P)= — (D,D) + (P, D),

(27)

where (15)-(18) and the complex-conjugate of (4) have been
employed. Thus the time-derivative of (9) is

dr _ (9,9)+ (@) (2,2) d(®,P) —o

dt (@,P) (DD} dt
by virtue of (27) and (26).

Observe that the constancy of I” defined by (9) is analo-
gous to the constancy of the Hamiltonian expectation value
(H ) in quantum field theory. The slight complication here
comes from the non-skew-adjointness of F(# — F')shown
in (17), but the dynamical effects of ¢ cancel out in (9).

(28)

IV. EVALUATION OF 7" FOR A SEMI-GAUSSIAN
STATISTICAL ENSEMBLE

Suppose that
@ =exp ( — %ff Ry, (X' X", (X )y (x")d *x'd *x”

+id [yt ])

(29)
is a suitable approximation for the characteristic functional
during a certain time-interval of the decay, where

Alytl=Alyt|*=—4[—y1] (30)

is an arbitrary real odd functional of y. The semi-Gaussian
form (29) is consistent with (2) and (3) provided that

Ry (x',x",t) = (u;(x',t Yup (x",t)) (31)

is the positive-definite symmetric solenoidal two-point ve-
locity correlation tensor. For the numerator in (9) one ob-
tains

Gerald Rosen 194



@)= [ (= £ [[ ket xam i wa s

+id [yt ])|® *D(y) 32)
- _ _ff Ry (x',x" t)J- FX W)@ D (y)
xd3x'd3x"
because
|® | = exp ( — ff Ry (x',x",t (X Wi (x")d *x'd x")
(33)

is even in y while 4 [y, ] is odd as a consequence of {30). The
remaining Gaussian functional integral in the final member
of (32) is well known,”® and thus (9) is evaluated as

F_——ff xx R
(34)

where R ~' is the matrix-kernel inverse to R on the space of
solenoidal vector-fields:

2 xLx")d 3x d 3x”,

ij; (x',x,2 )Ry (x,x",) d *x = 8j(x" — x")
82
= (5]-, L —) 5’ —x"). (35)
ox';0x",

Clearly, if the time-dependence in (31) resides entirely in a
scalar prefactor, '

R, (X', x",1) = u?(1)Cp (x',X"), (36)
then (35), (34), and (10) imply that
d*[Inu?(t))/dt*=0. (37)

Equation (37) shows that the decay of u? is exponential dur-
ing the time-interval for which (29) remains valid as an ap-
proximation.

V. PROBABILISTIC SIGNIFICANCE AND VALUE OF I

As established by Liouville’s theorem, the flow of prob-
ability is incompressible in phase space for a conservative
Hamiltonian dynamical system. The Navier-Stokes equa-
tion {1) describes a nonconservative dynamical system with
dissipation produced by the viscosity term. As a conse-
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quence, probability flows like a uniformly contracting com-
pressible fluid in infinite-dimensional u(x)-space. A simplify-
ing feature of the probability flow in u(x)-space is that the
divergence of the flow-lines equals — ¢ for all u(x} and ¢,
where the positive constant ¢ is defined by (19). It is this
constancy of the probability-flow divergence which pro-
duces constancy of I" defined in (9). By introducing the prob-
ability density> P [u,t ] as the functional Fourier transform of
(2), the quantity (9) is expressible as

r= %—;iln UP [u,t]zD(u)) (38)

while (26) becomes

%fP[u,t]zD(u) =cfP[u,t 1D (u). (39)

Thus, constancy of the probability flow divergence [implicit
in the Hopf equation (4)] engenders the value which follows
from (38) and (39),

r=1ic (40)

'G. Rosen, J. Math. Phys. 23, 676 (1982).

’G. Rosen, J. Math. Phys. 22, 1819 (1981).

*E. Hopf, J. Ratl. Mech. Anal. 1, 87 (1952); E. Hopf and E. W. Titt, J. Ratl.
Mech. Anal. 2, 587 (1953).

*It should be noted that S® = f(Iy(x)/3x, )(5°P /8y, (x)8y, (x)) d *x

— $Y'(X)(6/8yx (X)V (5D /8y;(x)) d *x by virtue of the fourth condi-
tion in (3), which implies that V, (6@ /8y, (x)) = 0.

SA. Hasegawa, Y. Kodama, and K. Watanabe, Phys. Rev. Lett. 47, 1525
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°A space-time path integral representation of the general solution to (4) has
been known for over 20 years [G. Rosen, Phys. Fluids 3, 519, 525 (1960); I.
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An approximate solution of the oscillatory flow of an electrically conducting fluid, between two
parallel and electrically conducting plates and under transversely applied magnetic field, is given
for the transient velocity, the transient magnetic field, amplitude and the phase of the skin friction
and the rate of heat transfer. It is observed that the transient flow, amplitude, and the phase of the
skin-friction and the rate of heat transfer are affected by the individual electrical conductance

ratios of the plates, which is not so in the case of steady magnetohydrodynamic (MHD) channel

flow between conducting plates.

PACS numbers: 47.65. + a, 47.60. + i, 47.25.Qv

1. INTRODUCTION

Steady MHD channel flows have been studied during
last 20 years by a number of researchers because of its appli-
cations in MHD generators, MHD flow meters, nuclear en-
gineering etc. These are discussed in books like Cowling,’
Pai,” Sutton and Sherman,® and Hughes and Young* under
different physical conditions. In all these studies, the chan-
nel is bounded by electrically nonconduction plates. How-
ever, in a number of cases, the plates of the channel become
electrically conducting. This leads to a change of boundary
conditions on the induced magnetic field and it is derived by
Shercliff.” Taking into account electrically conducting
plates, the steady MHD channel flow was studied by Chang
and Yen,® whereas the heat transfer aspect of this flow was
studied by Soundalgekar.”

In all these studies, the pressure gradient is assumed to
be constant. If the pressure gradient is assumed to be oscilla-
tory of the form

LB gy, (1)

p ox
the MHD channel flow becomes oscillatory and such a study
for a nonconducting plate MHD channel was made recently
by Soundalgekar and Bhat.® But how the conducting plates
affect the oscillatory flow, whose pressure gradient is repre-
sented by (1), has not been studied in the literature. Also, the
heat transfer of such a flow has also not been studied in the
literature. Hence it is now proposed to study the effects of
electrically conducting plates of the channel on the oscilla-
tory flow and heat transfer. In Refs. 6 and 7 it was observed
that the flow and heat transfer are affected by the sum of the
electrical conductance ratios, @, + @, of the two plates,
where @, and &, are the electrical conductance ratios of the
two plates. However, in the present case, the transient veloc-
ity, the transient magnetic field, the amplitude, and the
phase of the skin friction and the rate of heat transfer are
found to be affected by the individual electrical conductance
ratios. This is the most significant change observed due to
the oscillatory flow character in the MHD channel. In Sec. 2,
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the mathematical analysis is presented and in Sec. 3, the
conclusions are set out.

2. MATHEMATICAL ANALYSIS

Consider the unsteady flow of an electrically conduct-
ing,viscous, incompressible fluid between two infinite paral-
lel plates, separated by a distance of 2L. The x’ axis is taken
along the center line of the channel and the y’ axis taken
normal to it. A magnetic field of uniform strength is assumed
to be applied parallel to the y’ axis. The flow is now governed
by the following equations:

’ 1 ' 62 ’ cH aH;
e e Y
ot p Ox dy 4m7p 3y
oH o’ FH!

=H T g, (3)
at dy dy

and the boundary conditions are:

’

dH !
u':O, alle—'—O'H;:O aty': +L
ly .

4

dH '
u=0, od,———0H,=0 aty'=—L,
dy

Here u’ is the velocity in the x’ direction, v the kinematic
viscosity, ¢, the magnetic permeability, A, the constant ap-
plied magnetic field, p the density, H ; the induced magnetic
field, ¢ ' the time, 7 = 1/4w1. o the magnetic diffusivity, o the
scalar electrical conductivity of the fluid, and o,, ¢, the sca-
lar electrical conductivities of the upper and lower plates
with thicknesses d, and d,, respectively.
To find the solutions, we now assume

H, =h}+e"“"h; (5)

and substitute (5) and (1) in Egs. (2)—(4), equate harmonic and
nonharmonic terms and get

u = uj + € 'uy,

d’u} H, dh}

v o , M Ay ? A=0, (6)
dy”? dmp dy
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A p.H, dh

pI L BT T L g iy, )
dy 4mp dy
du d*h

Ho ¥ g =0 "
duj  d?h|

Ho g+ 1 gym ~ ®

and the boundary conditions are

uy=u; =0 aty' = +1L,
d

hr
od, —= +ohfy =0,
dy’'
dh;
od,——+0oh{=0 aty =L, (10)
dy
dh}
od,—=~ —oh}, =0,
dy’'
dh;
ody,— —ch, =0 aty=—L.

’

Introducing the following nondimensional quantities:

y=y/L, hy=hi/HR,, h =h{/HR,,
R, =4mu olA*, A*=AL*/v, u,=uy/A*,
(11)
u,=u,/A* M?*=p’H}L%/u, o=o'L*/v,
*
¢>l=ald', 452:02‘12, R,=LA
oL oL
in Egs. (6)~(10), we have
2
dup L pp29ho_ (12)
dy? dy
2
d ’;0 _,_éﬁ: , (13)
dy dy
d’u, 2 dh, ,
M — + 1=iou,, 14)
dyz + dy 1 (
2
f_ﬂ+%=inhl, (15)
dy* dy
where N = R, /Re, and the boundary conditions are
u0=u,=0 aty=j:ls
04— hy=0 aty= +1,
dy o, 0 y
dhy 1
2 —hy=0 aty= -1,
@ " g (16)
dh, 1
=4 —h =0 aty= +1,
dy ®, 1 y
ﬁl_—l—}“: aty=—1.
dy @,

Here R,,, and M are, respectively, magnetic Reynolds and
Hartmann numbers.

The solutions of Eqs. (12)-(15) satisfying the boundary
conditions (16) are derived as follows:

uy = Cy(cosh My — cosh M), (17)
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sinhMy y

hy= —GC, " _W+C3’ (18)
u, = {X,(C, sinh b, y + C; cosh b, y) + X,(C, sinh b, y
+ C, cosh b, y) + 1}/iw , (19)
h,=C,coshb, y+ Cssinh b,y + C;cosh b, y
+ C,sinh b, y, (20)

where the constants b,, b,, C,,..., C, are defined in the Ap-
pendix.

The steady velocity profiles were already studied in Ref.
5. The velocity and induced magnetic field are given by
uy(y)

u=u,+ e
(21)
h=hy+ €e“h,(y).
We can write the expressions for ¥ and 4 in terms of their
fluctuating parts for wt = /2 as

u=u,—€eM,,

(22)
h=h,—e€h,,
where
M, +iM,=u,, h,+ih,;=h,. (23)

In order to get physical insight into the problem, we have
calculated u and # from Eqgs. {22) and these are shown in
Figs. 1 and 2 respectively.

It has been observed in Ref. 5 that the steady velocity is
affected by the sum of the electrical conductance ratios of the
two plates. But in the present case, the transient velocity has
been found to be affected by the individual electrical conduc-
tance ratios of the plate. We observe from Fig. 1 that when
@,, @,, M are constant, an increase in @ has different effects.
At small values of w, the transient velocity increases but at
large values of w (~ 100}, the transient velocity decreases.
The effect of increasing M is the same as in steady-state case

h oM @
I 1.0 02 20 50
I 10 02 201000
m 1.0 02 60 50
I 10 02 60 150 -04
Y 50 06 20 50
YI 02 10 20 50
VI 02 02 20 50
¥l 50 02 20 50
X 1.0 06 20 50
X 10 02601000

FIG. 1. Transient velocity profiles Rm/Re = 0.02, € = 0.2, wt = 7/2.
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FIG. 2. Transient magnetic field Rm/Re = 0.02, € = 0.2, ot = 7/2.

and we observe that the transient velocity decreases and gets
flattened. Also an increase in @, or @, leads to a decrease in
the transient velocity. The transient induced magnetic field
is shown in Fig. 2. We observe from Fig. 2 that the transient
induced magnetic field decreases with increasing o or M.
But an increase in @, leads to an increase in 4, whereas an
increase in @, leads to a decrease in A.

From the velocity field, we now study the skin friction.
It is given by

= ~pn d_u' , (24}
ay'ly—+1
which in view of (11) reduces to
T=7/(ud "‘/L)=ﬂ
dy ly- +1
— 4 + e T . (25)
dy ly= 41 dy ly— +1
The numerical values of 7,, = du,/dy|,_ _, are calculated

and they are shown in Table I. We observe from this table
that the mean skin friction 7, decreases with increasing

We can express 7 in terms of the amplitude and phase as
T=1, + €|B|cosiwt + a),

where
du
B=—"1 =B, + iB, (26)
day ly— +1
and
tana = B,/B, .

The numerical values of |B | at the two plates are entered in
Table I. They are affected by the individual conductance
ratios of the plates. Let us denote the amplitude of the skin
friction at the lower plate as |B,| and that at the upper plate
by |B,|. We observe that an increase in @, or @, leads to a
decrease in both |B,| and |B,|. But an increase in w leads to a
decrease in |B,| and |B,]. |B,], | B,| also decrease with in-
creasing M.

The values of tan a, the phase of the skin friction, are
also entered in Table 1. We conclude from this table that,
both being negative, there is always a phase lag.

A. Energy equation

The unsteady energy equation for the present case is
given by
ar’ |, I wN i
Pl ' k oy’ T (ay’) + o’ 27
which takes account of both viscous and Joule dissipation
effects.
We assume the solution in the form

6=00+§(el}u','01 +e—i(m(,gl)

+ _;i(eZim't'ez te— Ziw't’éz) , (28)
where 9 = T' — T,/(T, — T,) and ~ denotes the complex
conjugate. Here T, and 7, are the temperatures of the lower

and upper plates, respectively. In addition to (28), we write
(5)as

€, e’
ulzué _+_?(em)lu; +€ lwlu;)

P, + L. and (29)
TABLE I. Valuesof 7, ,|B |, tan a.
Mean skin-
friction at 1Bl |B,] tan a at
M Rm/Re @ &, @, Y=1 y=—1 y=+1
2.0 0.02 5.0 0.2 1.0 0.7128 0.4959 0.4991 —0.7230 — 0.7056
20 0.02 5.0 1.0 0.2 0.7128 0.4991 0.4959 —0.7056 - 0.7230
20 0.02 5.0 0.6 5.0 0.5581 0.4413 0.4492 — 0.5482 —0.5168
2.0 0.02 5.0 0.2 0.2 0.8481 0.5316 0.5316 — 0.8543 — 0.8543
2.0 0.02 16.0 0.2 1.0 0.7128 0.3364 0.3421 — 0.9685 — 0.9438
2.0 0.02 15.0 0.2 1.0 0.7128 0.2650 0.2713 - 1.013 —0.9954
2.0 0.01 50 0.2 1.0 0.7128 0.4954 0.4969 —0.7198 —0.7109
2.0 0.01 15.0 0.2 1.0 0.7128 0.2661 0.2691 — 1.006 - —0.9933
4.0 0.02 5.0 0.2 1.0 0.4704 0.4279 0.4313 —0.3712 —0.3414
4.0 0.02 5.0 0.6 5.0 0.3113 0.3012 0.3086 —0.2070 —0.1470
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. . € it eI

Je=Jo+ e e ).

Substituting (28) and (29)in Egs. (27), equating harmonic and
nonharmonic terms, and neglecting the coefficients of €, we
get, in view of {11), the following equations in nondimen-
sional form:

el -GS

2 —
+M2PE(J0 +—62—J1J1) =0, (30)
2
dd f‘ — iwP6, = — 2PE (%)(%) —2M2PEJ,J,, (31)
y y /\ dy
2
ddyezz — 2iwPO, = — —PE [(‘Z; ) + Msz] : (32)

and two more equations for 8,, 8, similar to (31) and (32),
respectively. Here P = uc,/k is the Prandtl number,
E =A4%*/c,(T, — T)), the Eckert number, and
J=j,/opu HyA*

The boundary conditions are:
Ol —1)=0, Go(l)=1, O,(+1)=0, 6,(£1)=0.(33)
Remembering thatJ = — dh /dy, and substitutingforu,, u,,
hq, and A, from (17)—(20), in Egs. (30)~(32), and solving these
under the boundary conditions (33), we have

0, =Cs + Coy + Py(y), (34)

where

P(y)= — PE Pll()’)"'fzz‘Pn(J’) )

X, cosh 2My + X, cosh My + y*/2M *,

X5 cosh bs y + X sinh bg y + X, cosh by y
+ X,g sinh by + X4 cosh b,y + X, sinh b, y
+ X,, cosh by y + X,, sinh by y + X,; cosh by y
+ X,4 sinh by y + X, cosh b,y + X, sinh by
+ X,;cosh by + X,gsinh by, y
+ Xy cosh b, y + X5 sinh by, p,

X305D55-.-

Puiy =
Py =

where the constants C,,C,,..., ,b, are given in the

Appendix.

0, = C,p,cosh by y + C,, sinh b5y — 2PEP,(y), (35)
where
Py{y}= X3, sinh by3 p + X5, cosh b3 ¥ + Xa3 sinh by, p

+ X5, cosh by, ¥ + X;6 sinh b5 y + X34 cosh b5 p
+ X5, sinh b ¢ y + X5 cosh by + X;gsinh b, y
+ Xyocoshb,y+ X, sinhb,y+ X, cosh b, y.

The constants are defined in the Appendix.

@, =C\ycoshb,y+ C3sinhb,y — 1 PEPy(y), (36)
where
Py(y) = X43 + Xy cosh 2b, y + X, 5 sinh 25, y
+ X4 cosh 2b, y + X, sinh 2b, y + X g cosh b, y
+ Xyosinh b,y + X5 cosh b y
+ X, sinh b3y .
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The constants X,,..., X5, are defined in the Appendix.
Substituting for §,, 8,, and &, in the expression for 6, we

can get the expression for the temperature field. But we are

interested in the rate of heat transfer. It is given by

, aT’
¢=—kZ— 37
W ly- s
and in view of (11), Eq. (37) reduces to
= ﬁ _— 19_0 _+_ eei‘U’ @
dy ly= 41 dy ly- +1 dy ly=+1
+ €2e2i¢ut@ , (38)
dy ly— 41
whereg= — ¢'L /k (T, — T)).
The mean rate of heat transfer is given by
LT (39)
dy ly= 1

From (34) and (39), we have calculated the expression for g,,
and the numerical values of ¢, are entered in Table II. We
observe from this table that g,, at the lower plate decreases
with increasing @, whereas ¢,, at the upper plate increases
with increasing @,. g,, is not significantly affected by w at
both the plates. Anincrease in £ leads to anincreaseing,, at
the lower plate and a decrease in ¢,, at the upper plate. But
anincreasein M leads to an increase in ¢,, at the upper plate
and a decrease in ¢,, at the lower plate.

We can now express the expression for the rate of heat
transfer in terms of the amplitude and phase as

g =g, + €|Q,| coswt + a,) + €| Q| cosjwr + a,),

(40)
where
dé .
o = — =0y, +1Q,
dy ly= +1
daé ,
Q=2 =0, +1iQy (41)
dyly- +1
tana, = Q,,/Q,,, tana,=Q,,/0,,.

We have calculated the numerical values of |Q, |, |Q.|,

tan «,, and tan a, and their numerical values are entered in
Table I1. We observe from this table that an increase in @, or
@, leads to a decrease in the amplitude of the first harmonic
of the rate of heat transfer. |Q,| decreases with increasing @
or M. The effects of @,, ®,, M, or w on |Q,|, the amplitude of
the second harmonic,are the same as in |Q,|.

The values of tan a, the phase of the first harmonic,
being negative, we conclude that there is a phase lag, whereas
the values of tan a, being positive, there is always a phase
lead.

3. CONCLUSIONS

1) The transient velocity increases with increasing w at
small values of w, whereas at large values of w it decreases.

2) The transient velocity decreases with increasing M,
D, or D,.

3) The amplitudes of the skin friction at both the plates
decrease with increasing @,, @,, M, or w.
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TABLE II. Values of ¢,,,, |Q,l, |@>|, tan a,, tan a, (P = 0.71).

At the
wall Im Q] tan a, Q. tan a,
y =
-1 05011 0.9745x107* —2.903 0.1200x107? 2.443
0.2 1.0 2.0 0.02 5 0.01
+1 0.4989 0.9743x 10~* —2.830 0.1213x10™? 2.682
-1 05011 0.9743x10* —2.830 0.1213x 107? 2.682
1.0 02 2.0 0.02 5 0.02
+1 0.4989 0.9745x 10~° —2.903 0.1200x 1073 2.443
-1 0.5010 0.8533x 107 — 3.385 0.1032x 1073 2.800
0.6 5.0 2.0 0.02 5 0.01
+1 0.4990 0.8546x 1073 —3.356 0.1044x 107 3.130
-1 0.5014 0.1189x 102 —2.831 0.1426107* 1.971
02 02 2.0 0.02 5 0.01
+1  0.4986 0.1189x1072 —2.831 0.1426x 1073 1.971
-1 0.5011 0.3068 x 10~? — 8.006 0.2004 x 107 1.033
0.2 1.0 2.0 0.02 15 0.01
+1 04989 0.3104x 103 —6.929 0.2132x107* 1.108
-1 0.5023 0.1949x 1072 —2.903 0.2401x 1073 2.443
0.2 1.0 2.0 0.02 ) 0.02
+1 04977 0.1949x 1072 —2.830 0.2426x107° 2.682
—1 05011 0.9732x1073 —2.881 0.1200x 10~° 2.485
02 10 2.0 0.01 5 0.01
+1 0.4989 0.9729x107* —2.844 0.1206x 10 2.602
-1 0.5004 0.4760x 1073 — 1.442 0.7595x10~* —4.779
0.2 1.0 4.0 0.02 5 0.01
+1 0.4996 0.4743x 107 - 1.397 0.7534x107* —3.740
4) The mean rate of heat transfer at the lower plate de- of heat transfer at the upper plate and a decrease at the lower
creases with increasing @, but increases with increasing @,. plate.
5) The mean rate of heat transfer is not significantly 8} The amplitudes of the first and second harmonics of
affected by w at both the plates. the rate of heat transfer at both the plates decrease with in-
6) Anincrease in E leads to an increase in the mean rate creasing @,, ®@,, », or M.
of heat transfer at the lower plate and a decrease at the upper 9) There is always a phase lag in the first harmonic of the
plate. heat transfer at both the plates whereas in the case of the
7) Anincrease in M leads to an increase in the mean rate second harmonic there is a phase lead.
il
APPENDIX

b2, = (M2 +io(N+ 1)+ VIM*+ 0N+ 1) +40°N }/2, by =VioP, by=V2ioP, bs=b,+b,
b =b1—51» b7=b1+52’ b8=b1_52’ b9=b2+51’ blozbz—zv bu=b2+52’ b12=b2—l_)2,
b,=M+b,, by=M~—-b, bs=M+b, be=M—b, b,=b+b, byg=b —b,

a, =M?b,, a,=M?bb,, a,=M?b,b,, a,=M?b,b,,

C, = —(I/M*+ Cycosh M), Cy= —(2+ D, + P,)/M {(®, + D,)M cosh M + 2 sinh M |,
G = (D, — @))C /2, Cu= XXy — X Xg)/ (XX — XoXe), Cs = (X3Xg — XsXo)/ (X3 X7 — X X)),
C, = — C,X,sinh b,/X,sinhb,, C,= —(1+X,Cscoshb,)/X,coshb,, Co=}[1—P(1)—P(— 1)},

Co, =3[1 =P (1) +P(—1), Cio=PE[Py1)+ Py —1)J/cosh b;, C,, =PE[Py[1) — Py — 1))/sinh b,,
C,, = PE[Py(1) + Py(— 1)]/4 cosh b,, C\3=PE[P;(1) — P5( — 1)]/4 sinh b,,

X, =b(M?+ioN—b2), X,=bM>+ioN—b3), X;=(®, —P,)bX,— X,by)sinh b,/X,,

X, =b,(®, + @,) cosh b, + 2 sinh b, — {b,(P, + D,)cosh b, + 2 sinh b,} X, cosh b,/ X, cosh b,

X; = {by(P; + Py)cosh b, + 2 sinh b,} /X, cosh b,,
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Xs = b,(P, + D,)sinh b, + 2 cosh b, — [b,(P, + P,)sinh b, + 2 cosh b,} X, sinh b,/X, sinh b,,

X; =X;coshb,/sinhb,, Xg=byP, — P,/ X,, Xo=Ci/4, X,,=2C3i/M? X, =X,Cpb /io,

X, =X,Csb/iv, Xi3=X,Cebr/in, X,y=X,Cibr/io, Xys=1[X\ X, + X, X1, +a,(C,Cq + CsCs)l/2b3,
X6 = X1 X2 + XX, + a,(CiCs + CC)/2b3, Xy = X, Xy, — X1 Xyp + ay — CC, + CCi))/2b 1,
Xig=[— XXy, + XXy, + a)(CCs — CSC)I/2b2, Xyo=[X,, X5 + X, .X 4 + a,(C,Cs + C;C,)]/2b2,

Xy = (X, X4 + XX, + a2(C4Z'.7 + C5€'6)]/2b§, Xy =X X5 — XX 14 + a5 — C,Cs + CsC,))/2b3,
Xp=[- Xn/?u + X X5+ az(C4E7 - Csz'e)]/Zb 8 Xp= [Xlsi;u + Xl4712 + a5(CsC, + C,Cs)1/2b3,

Xy = [X,5X,, + X, X, + ay(CCs + C,C)1/2b%, Xp5= XX,y — X, Xy, + a5 — CsCy + C,Ci)l/2b3,,
Xoo =[— X3 X5 + XXy, + 05(CCs — CiCJI/2b%, Xy = [X15X 13 + X1 X s + a(CeCs + C,Cr)1/262,,
Xog = [X13X,1s + X1 X3 + a(CeCr + CCe)l/2b%,,  Xpg = [X13X 13 — X, X4 + a4 — CCs + C,C)1/2b3,,
Xo=1[- Xlsf?u + X14X’13 + a4(C667 - C‘/E'o)]/Zb 1

In the following, f(D) = D? — iwP, g (D) = D?* — 2iwP.

X;, =M (X, — MCb))/2f(brs), Xpp=CM(X,; —MCsb))/2 flbyy), X3 = CM(X,) + MC.b,)/2 f(b,a),
Xyy= —CM(X\, + MCsb,)/2 fb1a) X35 = C,M (X3 — MCeb,)/2 f(bys), Xze= CoM (X4 — MC:b,)/2 f(bys),
Xy = OM (X5 + MCh))/2 flbig), Xzg= — CM(X\s +MCb)/2 flbys), Xzg= ~ Ciby/ f(b)),

X = —Csbi/ flb)), Xay= —Ceby/ f(by), Xyy= — Ciby/ f(br),

Xo=[XH XL+ X5 — X1, + MY —Cibt +C3b] ~C3b3 +C3b3))/2(0),

X44 = [X%l +sz + Mzbf(Ci + C§)]/2g (bl)’ X45 = (X11X12 +M2C4C5bf)/g (Zbl)’

X =(Xh + X3 + M?Cb3)/28 (2b), Xy = (X13X14 + MC,Crb3)/8 (2b)),

Xy = [X1: X 13 + X 12X 14 + M *(CCeb b, + CsCrb1by)1/8 (by3),

Xy = [X1: X 14 + X 12X 15 + MP(C,Crb1b, + CsCeb b)))/g (b17),

Xso = [X1:X 13 — XXy + M?b,by(CsC; — CCy))/g (byg)s

X5, = [ = X1 X1 + X 12X15 + M ?b,5,(C,C; — C5Co))/g (bys).

'T. G. Cowling, Magnetohydrodynamics (Interscience, New York, 1957). “W‘.F. Hughes and Y. J. Young, The Electromagnetodynamics of Fluids
?S. 1. Pai togasd; ics and Plasma Dynamics (Springer-Verlag, (Wiley, New York, 1966).
N o e ogasdynamics and Plasma Dynamics (Springer-Verlag J. A. Shercliff, J. Fluid Mech. 1, 644 (1965).

°C. C. Chang and J. T. Yen, Z. Angew. Math. Phys. 13, 266 (1962).
V. M. Soundalgekar, Proc. Natl. Inst. Sci., India, Part A 35, 329 (1969).
*V. M. Soundalgekar and J. P. Bhat (to be published).

3G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics
{McGraw-Hill, New York, 1965).

201 J. Math. Phys., Vol. 24, No. 1, January 1983 V. M. Soundaigekar and J. P. Bhat 201



Analysis of the effect of surfaces on the tricritical behavior of systems?®

G. Gumbs

Division of Chemistry, National Research Council of Canada, Ottawa K14 OR6, Canada

(Received 10 February 1982; accepted for publication 20 August 1982)

The order parameter ¢ (z) of the ¢ °-dominated tricritical free energy functional is calculated for
film and half-space geometries. Extrapolation length (A ) boundary conditions are used to
simulate the effect of the surface. Closed-form expressions for ¢ (z) of a film are given in terms of
Weierstrass elliptic functions, or, alternatively, Jacobi elliptic functions. For a half-space, ¢ (z) is
expressed in terms of hyperbolic functions. In the absence of an external field, it is shown that the
phase transitions which the system can undergo may be classified as ordinary (A > 0), surface
(A <0), and special (4 = o), like the ¢ * theory for second-order phase transitions. The critical
exponents for the order parameter at the surface are determined for each type of phase transition.
A discussion of the free energy for the surface phase is also presented.

PACS numbers: 64.60.Kw, 64.60.Fr, 68.60. + g, 02.30. + g

1. INTRODUCTION

Progress in the theory of critical phenomena in bulk
systems has been achieved with the use of the renormaliza-
tion group (RG) method. The effects of surfaces on phase
transitions have also received considerable attention recent-
ly, but the lack of translational invariance has made the ap-
plication of the RG method much more difficult. Mean-field
theories have also been applied to both bulk systems and
systems with surfaces with considerable success. However,
for a film of finite thickness even a mean-field theory (MFT)
calculation of the correlation function above the critical tem-
perature or of the order parameter in the ordered phase can
be very involved.'

The phenomenological theory for systems with a tricri-
tical point, such as occurs in He’~He* mixtures, has been the
subject of much discussion recently. However, with the ex-
ception of Binder and Landau,” all these studies have been
confined to bulk systems.’~® In particular, a scaling theory
for tricritical behavior has been developed by Riedel and
Wegner.? These authors® as well as Stephen ez al.* have not-
ed that MFT for tricritical points is correct in three dimen-
sions, apart from logarithmic corrections. (Similar logarith-
mic corrections are also needed in four dimensions for the
MFT of the Ising spin model.'?) Tricritical behavior in a
metamagnetic single crystal, in the presence of an ordering
field, has also been discussed recently. However, the Hamil-
tonian needed'’ is considerably more complicated than that
of Riedel and Wegner.

In this paper, we consider the symmetrical tricritical
point of Riedel and Wegner in the presence of a surface. The
system is described by an energy functional which contains
extra terms arising from the surfaces atz =0andz = L:

szdxuwam+§ﬁvmmr+gm%m+gwﬂm

+(£3/A4)[8(2) + 8z — L)1g *(x)}. (L1)
Here ¢ (x) is a scalar order parameter and ry=7 — 1 where
=T /T M), with TMF( 0} equal to the mean-field transi-
tion temperature for the bulk. x=(x,,2) is a spatial vector

2 National Research Council of Canada No. 20489.
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within the film, with x; parallel to the surface. The integra-
tion over z in (1.1) is from O to L, and &, is a temperature-
independent length scale for the system. A is an extrapola-
tion length whose significance is such that if the value of ¢
were extrapolated a distance A beyond each surface, ¢ would
vanish there. This type of boundary condition has been used
in many papers (see, for example, the references given by
Cordery and Griffin'?) which have studied the effects of a
surface on the phase transition of spin systems using the
continuous spin Ginzburg-Landau—Wilson (GLW) Hamil-
tonian. The coefficient g, in (1.1) depends on temperature as
well as the interactions causing tricriticality.* At the tricriti-
cal point, g, vanishes while g, is finite and positive. Below the
critical temperature 7, in the mean-field treatment of the
problem, g, is set equal to zero while the ¢ © term is retained
in the energy functional (1.1)."* Above T, when fluctuations
areignored, g, and g, are set equal to zero, and the two-point
correlation function for a bounded system with a tricritical
point is equal to that derived previously in MFT."* In the
present paper, we derive expressions for the order parameter
of the ¢ ®-dominated, tricritical free energy functional for
film and half-space geometries. Owing to translational in-
variance parallel to the surface, ¢ depends only on the vari-
able z.

With the free energy (1.1), we show that the system has
anordinary, surface, and special transition, depending on the
value of the extrapolation length A. This classification fol-
lows that of Bray and Moore'® and Lubensky and Rubin'*
for usual second-order phase transitions. For the ordinary
transition, A > 0 and the system orders at the bulk transition
temperature. For the surface transition, the surface orders
spontaneously at a higher temperature than the bulk. For the
special transition, A = « and the system orders at the bulk
transition temperature.

1. THE ORDER PARAMETER FOR A FILM BELOW 7,

Within MFT, the order parameter for a film is obtained
by minimizing the free energy (1.1). Doing so and setting
g4 =0, we obtain

240G )4 g, 2.1)
dz-
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with the boundary conditions

dglz) _

1 ——
2 _A ¢ (z), z=0, (2.2a)
déiz) _ 1 _
Cl=— b =L (2.2b)

With the use of these equations, one may show that in ther-
modynamic equilibrium the free energy is given by

L
Flgl= —i f dz $ (). 2.3)

Multiplying the differential equation (2.1) by d¢ (z)/dz
and then integrating over z, we obtain

gé("—‘z-z‘z—’) = rod ) + 18 *l2) + R, (2.4)

where R is independent of the z coordinate. In general, the
order parameter is either symmetric (S) or antisymmetric (A)
about the midplane z = L /2 of the film. From symmetry
considerations, ¢ (z) satisfies d¢ (z)/dz = Oatz = L /2 for the
S solution, whereas ¢ (2) satisfies ¢ (z = L /2) = O for the A
solution. Define a function #{(z) in terms of ¢ (z) by the equa-
tion

¢2) =5/ ¥(z) —c], (2.5)

where ¢ is independent of z. Substituting (2.5) into (2.4), we
obtain after a little algebra

&3 () = (53) v v o{n—33) v

2
dz .

— 4c(2r0 — ?;f) Ylz)

o

1
+ 4(r0c2 + ?g6¢3 - :;2 c3). (2.6)

0
Choose c¢ so that the ¥ term in (2.6) vanishes. This gives

c=ru3/3R. (2.7)
Also, choose R to be
R= —1g@s/Bc+1) (2.8)

Therefore, ¢ 5 = ¢ *(z = L /2) for a symmetric solution, and
we must have ¢ 2 positive for the S case. For an antisymme-
tric solution, however, ¢ 5 might be positive or negative. Sub-
stituting (2.7) and (2.8) into (2.6), we obtain

2
L (M) =) — 3cPPYv) — (1 + 3¢ — 2¢%), (2.9)
4\ adv
where we have changed variables from z to v, with
v=(R"*/$oboNz — L /2).
In our notation, d,=|¢ 3|'/%
The differential equation for 1 in (2.9) is the same as that

satisfied by the Weierstrass elliptic function.'® The roots ¢,
e,, and e, of the cubic equation

(2.10)

Z2—3Z—(14+3~2%=0 2.11)
are
1/2 1/2
1+c,_(1+c)+4 and _(1+c)_A ’
2 2 2
(2.12)
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where A4 is the discriminant for the Weierstrass function and
is given by
4 =3(3c + l)fc —1). (2.13)

For definiteness, we separate the two cases correspond-
ing to 4 positive and negative, and adopt the following nota-
tion:

Case (i): If 4 <0, we choose e, = 1 + ¢ and denote the
remaining (complex) roots by e, and e;.

Case (ii): If 4 > 0, we arrange the roots so that
e, > e, > e,. Therefore: (a) forc> — L,ie,c € [, —{)or
(1,00), we have

SRS

(2392
(b}forc< —}

L e

e, = —(1 42“‘)—‘12”2. (2.15)

The solutions of (2.9) depend on the values of ¢ 3 and c.
We now turn to calculating these solutions which are conve-
niently expressed in terms of Jacobi elliptic functions.

Region 1: 42 >0,c< — 4

For ¢ < — §, 4 > 0 and there are four possible solutions.
Introducing the variable # which is defined by

u=(1/¢bo)vie, —e;)R (z— L /2) (2.16)
and defining the modulus k by
k=le, — ex)/(e, — &), (2.17)
the solutions are'’
u e, —e
—_—)= , 2.18a
1/“ (\/el — €3 ) o snz(u,k) ( )
u e, —e,
—_— = X 2.18b
i ( Je, — e, > “t en’(u,k ) ( )
u
¥ (————) = ey + (e, — e)sn*(u,k ), (2.18¢)
3 \/g;;i::f;;; 3 2 3
61— % (2.18d)

u
— )= — ——— %

i (\/e, — e, ) l dn*(u,k )
Here sn, cn, and dn are the sine, cosine, and delta amplitude
Jacobi elliptic functions, respectively. sn(u) is antisymmetric
whereas cn(u) and dn(«) are symmetric in the argument
u— — u. Therefore, since u is related to z by (2.16), the solu-
tion (2.18a) yields a solution for ¢ (z) in (2.5) which is antisym-
metric about the midplane of the film. On the other hand,
(2.18b)—(2.18d) yield symmetric solutions.

With the use of (2.5) and ¢ (z = L /2) = ¢, for the sym-
metric solution, it is straightforward to show that for the
symmetric case

YO)=1++c. (2.19)
However, setting # = 0 in (2.18b)~(2.18d), we find that
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0,00)=e;, ¢0)=e; and yY,(0)=e,. (2.20)
Therefore, referring to {2.14) and (2.15), we find that for the
symmetric case, 1, is the solution forc € { — i, — ), ¢, 1is
the solution for ¢ < — 1, and 1, must be discarded.

Substituting (2.18b) into (2.5), we obtain the symmetric

solution for the order parameter, wherec € (— 1, — i)
bs(2) = doen(u,k )/ [(e, — e,) — (¢ — esJen(u,k)]"/2. (2.21a)

Since (2.21a) satisfies the boundary conditions (2.2), we
have'®

(e, — 93)1/2(31 — &,)R Uzsc(uo’k Jdn{uy,k )

= ($obo/A Nle, — ;) — (c — ez)cnz(umk 18 (2.21b)
where
ug=I(L /2¢x¢,) Ve, — es)R . (2.21¢)

For ¢ < — 1, the symmetric solution is obtained from (2.5)
and (2.18d):
bs(2) = dodn(u,k )/ [(e, — c)dn*(u,k) — (e, — ¢,)] 12,
(2.214d)

Imposing the boundary conditions (2.2) on (2.21d}, we have
(e, — e5)' (e, — e;)k *R '?sn(ugk )ed(ugk )

= (Bobo/A (e, — e) — (e, — c)dn*(ug,k )]. (2.21¢)
Substituting (2.18a) into (2.5), we obtain the antisymmetric
solution for ¢ when c < — {:
Balz) = dosnluk )/ [(es — e5) — (¢ — esfsn®(u,k )]'/2 (2.22a)
We must have from (2.22a) and (2.2)
(e, — e5)*"2R Y 2cs(ug,k Jdn(ug,k )

= — (pobo/A lle, — e3) — c — es)sn’(up,k )] (2.22b)

In this region, the values of ¢, R, and ¢, are determined by
(2.7), (2.8), and (2.21b) or (2.2 1e) for the symmetric solutions
and from (2.7), (2.8), and (2.22b) for the antisymmetric solu-
tion. Substituting these values into (2.21a), (2.21d), and
(2.22a), we obtain the solutions for ¢ (z) in terms of the origi-
nal parameters in (2.1) and (2.2).

Forc < — 1, wededuce from (2.8) that R > Osincegs >0
and ¢, is real (¢ 5 > 0) as shown in Fig. 1. Therefore, in region
1, ry<0.

Regions 2 and 3: 45 <0, — § <c<1

For this range of values for ¢, the discriminant 4 <0,
and there are two possible solutions for ¢ which satisfy (2.9).

These are
u \_, _ cn(u' k) 2 223
%( H!? ) e~ (sn(u’,x)dn(u',x)) ’ 2.23)
w \N_ ., _ sn(u’,x)dn(u’ k) \? 524
%( H)* ) &~ < cn(u’ k) ) ’ (2.24)

where (2.24) is obtained from {2.23) by replacing «’ by either
u + Koru' + iK',where Kand K ' are completeellipticinte-
grals.'® We have now introduced

Hi=le,— e, =1[9(1 + ¢ + |4 1], (2.25a)
u = (1/dofo) VHR (z— L /2), (2.25b)
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FIG. 1. Summary of the results for the order parameter, within mean-field
theory, of a film. The solutions are presented in Sec. I1.

k=y1 + 3e,/2H,. {2.25¢)

Referring to Fig. 1, we see that in regions 2 and 3, ¢ 5 < 0.
But, for a symmetric solution ¢, has to be real. Therefore, for
this range of values of with ¢ } < 0, ¢, must be discarded and
the solution is antisymmetric. Therefore, we have

2 - 1/2
= H( —)_1] . (226
¢A( ) ¢0 [ 2 Sn(u’,K)dn(u,,K) ( )
where, upon substituting (2.26a) into (2.2),
H PR "?[ 1 — 26%sn*(ug k) + k*sn*(uf ) ]
= — (Bofo/A Jsclug w)dn(ug k) [ Haen®(up )

— sn*(uf k)dn*(uf &) ]

cn(u’ k)

(2.26b)

Here
uy=(L /20oEo) H.R )", (2.26c)

and we stress that ¢,==|¢ 3 |'/%. The values of ¢, R, and ¢, are
now given by (2.7), (2.8}, and (2.26b). Equation (2.26a) thus
gives the solution for ¢ in terms of the parametersin (2.1) and
(2.2).

From (2.7), we find that in region 2, r,> 0, but 7, <0 in
region 3. From (2.8), we deduce that R > 0.

Regions 2'and 3: 42 >0, — 3} <c<1

Here the discriminant 4 of the Weierstrass function is
negative and the solutions may be obtained from Egs. (2.23)
and {2.24) by making the replacement »'—iu’. That is (see
8.153 of Gradshteyn and Ryzhik!), the solutions are

u' cn(u'x’) 2
—— | =e,+ H. (—-—————) , 2.27a
¢1( H)? ) © 2 sn(u’ «')dn(u’ &) ( )
u' sn(u’,«')dn(u’ x') )2
—— | =e,+H, (———-————— , 2.27b
¢2( H;/Z ) e2 2 Cn(u’,K’) ( )
where the argument and modulus are, respectively,
u' = (1/ofo) VHLIR | 2 — L /2), (2.27¢)
K'=y}— 3e,/2H,. (2.27d)
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Since u' is related to the z coordinate by (2.27¢),and ¢ 3 > 0in
this region (see Fig. 1), #, (,) gives an S (A) solution for ¢.
Note that 1, satisfies the condition (2.19) for a symmetric
solution. Substituting (2.27b) into (2.5), we obtain
ro PN \271-172
#s2) = do [1 + Hz(—————sn(“ A dnfu ) ) ] . (2.28a)
; cnfu' ')

Substituting (2.28a) into the boundary conditions defined in
(2.2), we obtain
H3?|R | ?sc(uf,«')dn(ug ')

X [1 = 2c"sn’(uf &) + kZsn(ug x) |

= (Poo/A ) [ Hosn®(uf x')dn(ug k") 4 en’(ug )],
(2.28b)

where

u=(L /28 £l H,|R |)'/%. (2.28¢)

To get the antisymmetric solution, we substitute (2.27a) into

(2.5) and obtain
21 -172
Salz) =0 [1 ) ] . (2.29a)
Imposing the boundary condition (2.2) on (2.29a), we have
HY?R | [1 = 23 sn*{(ug k') + o0 {ug «') ]
— (Bobo/A [ sclug 'Mdn(ug ') ] [ Hyen*(ug &)
+ sn?(ug & )dn?(uf )] (2.29Y)

Equations (2.7), (2.8), and (2.28b) or (2.29b) determine the
values of ¢, R, and @, in this region. AsshowninFig. 1,7,>0
in region 2', but r, < 0 in region 3'. We have R <0 for this
case. These results agree with (2.7) and (2.8).

+H ( cnfu' k')

sn(u’ «')dn(u' k'

Region 1': 42 >0,c> 1

For ¢> 1, the discriminant A of the Weierstrass func-
tion is positive. Also, in this region, ¢ 3 >0 and, therefore,
from (2.8), R <0. The solutions may be obtained from those
in region 1 with the replacement u—iu. Making use of the
results in 8.153 of Gradshteyn and Ryzhik,'® the solutions
are

u _ ., _la—e)
2 ( \/?_73) =e, k)’ (2.30a)
( ) =e, + (e, — e,)en’(u,k '), (2.30b)

Je, — e,
( ) _la—e) (2.30c)
Je—e en?(u,k )’

(e; — €3)

( N ) ot k) 12304
where

u= (/g e, —&;)[R | (z— L /2), (2.31a)
k'=yle, —e))/le, — e3). (2.31b)

For ¢> 1, e,, e,, and e are given by (2.14). Therefore,
(e, — c)sn®(u,k’) — (e, — e;) = sn*(u,k ') — (e; — e;) <0.That
is, ¥, in (2.30a) does not give a real value for ¢ (z) in (2.5) since
¢ 2 > 0. The solution for ¢, therefore, cannot be antisymme-
tric. From Egs. (2.30b)—(2.30d); we have #,<e,, ¥;<e;, and
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¥, >e,. Setting u = 0 in these equations, we obtain
P0)=e,=1+c, #0)=e;, tY(0)=e, (232)

Since a symmetric solution must satisfy {2.5), only ¢, is ac-
ceptable and the solution for ¢ > 1 and ¢ } > 0 is therefore

#s(2) = g0/ [(e) — exen’(u,k ) — (c —e;)]'%. (2.33a)
The boundary condition (2.2} and (2.33a) give
(ey — e3)' (e, — e))|R |”zsn(u0,k Jen(ug,k “)dn(ug,k ')
— (Pofo/A (e, — exen’(uok’) — (c — e;)],  (2.33b)
where, in (2.33b)
uyg=(L /2¢.&0) Vle, — e;3)|R |. (2.33¢)

Equations (2.7), (2.8), and (2.33b) together determine the val-
ues of ¢, R, and ¢,. Moreover, from (2.7) we find that r, <O.

In region 1” of Fig. 1, ¢ 2 <0 and ¢ > 1; however, for
¢> |, the discriminant in (2.13) satisfies 4 > 0 and the solu-
tions for ¢ in this region are given by Eqgs. (2.18). One may
deduce from (2.18a) that ¢, >e,, where e, = 1 + ¢ from
(2.14). That s, ¢, > c. Therefore, since ¢ > = |¢ 3| /(c — ¥), ¥,
does not give a real value for the order parameter, i.e., there
is no antisymmetric solution. ¢, has to be real for there to be
a symmetric solution. Therefore, we conclude that, in region
1", there are no real solutions for ¢ (z).

In region 1” of Fig. 1, where ¢ 3 <O and ¢ < — }, the
discriminant 4 > 0 and the solutions for i are given by (2.18).
However, the solution for ¢ cannot be symmetric, since
¢ 2 <0 and thus (2.18b}—2.18d) must be ruled out. For the
same reason given in our considerations of region 1", 1, does
not give a real value for ¢ in region 1”. We conclude, there-
fore, that there are no real solutions for ¢ (z) in region 1”.

In our discussion above, we did not consider the case for
which ¢ = — |, This value for ¢ needs special consideration.
Eliminating R from (2.7) and (2.8), we obtain ¢ §
= rol3c + 1)/6g,. Thatis ¢, vanishes whenc = — 1. For this
value of c, it follows from (2.13) that 4 = 0 and from (2.12)
that e, = 4, e, = e; = — }. Using the result in 8.1698 of
Gradshteyn and Ryzhik,'® we find that forc = — 4 (4 =0)

1
Z)| = — 1 + 2.34
e e P RN L7 M
is the symmetric solution for (2.9) and
Yalz)= — 4+ 1 (2.34b)

sin®((z — L /2)( — ro,)" /&)
is the antisymmetric solution. Here r,,
=T.(L)/T¥¥ () — 1, where T (L ) is the transition tem-
perature for a film.

Making use of {2.34) in (2.5), assuming that @, is infinite-
simal, and then substituting the result into the boundary
conditions (2.2), we obtain (after cancelling ¢,)

(— roC)”ztan(Z—E— (— rOC)”z) = % (2.35a)
from (2.34a) and
(- rm)"zcot(% (= ro?) =S (2.35b)

from (2.34b). There are two cases to consider, depending on
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the sign of 7. If r. <0, the argument of the tangent and
cotangent in (2.35) is real, and there are an infinite number of
solutions for these equations. However, the physical T, cor-
responds to the largest value. With A > 0, this comes from
Eq. (2.35a). That is, for A > 0 the reduced transition tem-
perature is

T (L)/TY(w)=1—xZ, (2.36a)
where xg is the smallest solution of
xgtan(Lxg/2£,) = E/A. (2.36b)

For A <0, it is (2.35a) with 7y, > 0 which gives the largest
possible value for 7. That is, for A <0, the reduced transi-
tion temperature is

T.(L)/TM(w0)=1+x3, {2.37a)
where x4 is the solution of
xgtanh(Lxg/2&,) = &/1A . {2.37b)

These results agree with the well-known results for the tran-
sition temperature of a film, within MFT, for the usual sec-
ond-order phase transitions.

It is a simple matter to verify that (2.36} and (2.37) may
be obtained by taking the limit c— — | from within either
region 1, 2, or 2. It also becomes apparent, when taking this
limit, that for the system to have an order-disorder transi-
tion, region 1 favors a positive value of the extrapolation
length A, whereas regions 2 and 2’ favor a negative value of
A.

For ¢ = 1, the discriminant A = 0. The solutions for
¢ (z) may be constructed from the degenerate results for the
Weierstrass function, as we did for c = — 1. This completes
our discussion of the solution of Eq. (2.1) subject to the
boundary condition (2.2).

Ill. THE ORDER PARAMETER FOR THE HALF-SPACE
BELOW 7.

The calculation for the order parameter for a film of
finite thickness is complicated by the fact that the value of R
in (2.4) is given implicitly by a set of three coupled equations
involving the boundary conditions (2.2). Furthermore, it
does not help to rewrite (2.4} as an integral equation since, for
arbitrary values of R, we cannot do the integral analytically
[we had to make use of the transformation (2.5)]. However,
for the semi-infinite geometry (z>>0j the calculation is consid-
erably simplified. In this case, we take the limit L—» o0 and
satisfy the boundary condition (2.2a) at z = 0 only. There is
no need to separate the solutions into symmetric and anti-
symmetric cases for this geometry. In addition, the value of
R is obtained from the condition that d¢ (z)/dz =0

= d %¢ (2)/dz* at z = . With this value of R, we now show
that (2.4)is easily integrated to give ¢ (z) explicitly. The analy-
sis proceeds in much the same way as the ¢ * theory."®

Setting d %¢ (z)/dz> = 0 at z = o into Eq. (2.1}, we find
thaté (z = o) = Oor( — 7,/g,)'/* These two valuesforg (o)
lead to the following considerations.

Case (i):#(0)=0

Here the extrapolation length A < 0 and the tempera-
ture must satisfy 1 <7 <7,, where 7,.=1 + £3/A4 % In this
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case R = 0 and (2.4) may be rewritten as an integral:

2 J¢ (z) 1

== — d$p ——— M —, 3.1

$o s0) Do+ 1ged )" .
where the minus sign on the right-hand side of (3.1) is chosen
since, for A <0, the value of ¢ at the surface is larger than in
the bulk. We now change variables in (3.1) from ¢ to 6, with
¢? = (ro/ig6)"* sinh8; 6 is real since r, > 0. After a straight-
forward calculation, we obtain

1A 1"%¢ (0)

$lz) = , 77 3:2)
[£_sinh(2z/& ) + |A |cosh(2z/£ )]

where

¢ (0)=[(3/84)(r, — 7)]""* (3.3a)
and

£ T)1=E/lr — 1)2 (3.3b)
From (3.2), we find that for z» £,

_ 12(r, — 7)(r — 1) 174 e, 34
¢(Z)~(g6[§(>/|A | +(r— 1)”212) e B

Therefore, the surface orders at 7, [see (3.3a)] while the bulk
orders at the mean-field bulk transition temperature. That is,
for A <0, the surface orders spontaneously at a higher tem-
perature than the bulk. This behavior has also been shown
for usual second-order phase transitions and is classified as a
surface transition.'*'"

Case (ii): ¢( ) = ( — ro/gs)1’4

For this case, Az0and 7 < 1 (i.e., 7, < 0). We can express
R of (2.4} in terms of ¢ { 0 ). Substituting this value for R into
(2.4), we rewrite this equation as an integral over ¢:

z 1 f‘t (z) ¢ 1

— = d .
& &/ Jso T [$%(e0) —471[87 + 28 ()] ”(23 :
Changing the variable of integration from ¢ to 6 where

¢ = v2 ¢ (o )sinh 6, one may easily do the integral in (3.5),
using 2.441(3) of Gradshteyn and Ryzhik.'® The result is

v3 4 3tanh(z/£ _)tanh 6, ]2 -2
¢(z):‘/2¢(00){[ ta:l—l(z/§)(:§\/_3)tanh 6 ] B 1] '
(3.6a)
where
E(T)=t/(1 — 72 (3.6b)
and 8, is given by
¢ {0} = v2 ¢ (co)sinh 8, (3.7)

With the use of the boundary condition (2.2a) at z = 0, to-
gether with the value of ¢ (o), one finds that x=sinh?6, is
given by

x*—30x+4=0, (3.8)

where

(L&) -

The three roots of the cubic equation (3.8) are real: Two
are positive in value and the other negative. The two positive
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roots which are physically meaningful are

x, = Q "?cos(C /3), (3.10a)

x, = 10 '?[V3sin(C /3) — cos(C /3)], (3.10b)
where C satisfies 7/2<C < 7 and is given by

cosC= — Q %2 (3.11)

Thus, for ry <0, ¢ (z) has two solutions: One corresponds to
A >0 and the other to A <0. We next identify these two
solutions.

In the limit ,—~0", Cis given by

C=7/2 4 (— )"} (|A /&) (3.12)
Making use of {3.12) in (3.10), we obtain in this limit
172
xl:ﬁ( 1 )/( So ) (3.13a)
2 — " A |
2
xp=i— ro)( 14 1) : (3.13b)
o
Substituting (3.13} into (3.7), we obtain for r,—0~
3 1/4 é‘ 172
¢(O)z(—> ( 9 ) , for x|, (3.14a)
86 A |
1/74
¢(0):(i) (l’ﬂ) (—r/, for x,  (3.14b)
986 8o

That is, in the limit 7—1 7, ¢ (0) remains finite [see (3.14a}j or
tends to zero [see (3.14b)]. However, we showed above that,
for negative extrapolation length, the surface orders at a
higher temperature than the bulk. Therefore, when 7 < 1, the
x, solution in (3.10a) corresponds to A <0, whereas the x,
solution in (3.10b) corresponds to A > 0. From (3.14b) and
the definition for ¢ (o ), we find that, for A > 0, the surface
layer and the bulk order at the mean-field transition tem-
perature TMF( ). This corresponds to the ordinary transi-
tion, discussed for usual second-order phase transitions.'*"’

If we now let A— o0 in Eq. (3.9), we find that Q = 1. In
this case, Eq. (3.8) hasaroot at x = — 1 and a double root at
x = 1. The negative root must be ruled out on physical
grounds. Substituting the value for the double root into (3.7),
we obtain

#(0) = ¢ (o). (3.15a)
For x =4, tanh §, = + 1/V3. Substituting into (3.6a), we
obtain the result

$(2)=41(0), (3.15b)
forr<1and A = . Thatis the order parameter is flat right
up to the surface and the system orders at the bulk mean-
field transition temperature. Following Bray and Moore,"
we refer to this as the special transition.

Figure 2 is a plot of ¢ {z)/¢ (0) for 7> 1 and A <O, using
the result in (3.2). Figure 3 is a plot of ¢ (z)/¢ (0) in (3.6) for
7 < 1: Curve I corresponds to the A <0 and curve Il to A > 0.

The surface order parameter ¢ (0) variesas (T, — T ) as
T—T . For the surface transition, it follows from (3.3a)
that

B =} (3.16a)
Equation (3.14) gives
Bi=3 (3.16b)
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FIG. 2. The order parameter for a surface transition (4 <0), for a half-
space, as a function of distance from the surface at z = 0. The plot is based
on the result in (3.2).

for the ordinary transition and (3.15a) gives

Bi=1} (3.16¢)
for the special transition. For the surface transition, the ex-
ponent 3 is equal to its bulk value. This result is expected

[fe}
"

o

me e

ORDER PARAMETER (P(2)/D(0)
§O =
o

o) . ] :
0 ! 2 3 4 5

0
Z(A)

FIG. 3. The order parameter for a half-space, as a function of the distance z
from the surface at z = 0. The plots are based on the results in (3.6)-(3.11).
Curve I corresponds to a surface transition (4 <0} and curve II to an ordi-
nary transition (4 > 0).
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since the exponent for the surface of a d-dimensional system
is equal to the exponent for a (d — 1)-dimensional system; in
MFT the exponents are independent of dimensionality.'*
Although the system orders at the bulk transition tempera-
ture for both the ordinary and special transitions, the ther-
modynamic exponent 5 is not the same for these two types of
phase transition. The difference is due to the relative value of
the mean field in the surface layer compared to that in the
bulk.

IV. THE FREE ENERGY FOR THE SURFACE (4 <0)
PHASE WHEN L = «

‘When we substitute (3.2) for ¢ (z) into (2.3), we obtain the
free energy for a half-space with A <O0and 1 <7 <7,
=1+4+£3/4%

Fr)= —1glA ¢, (

¢ °(0) ® 1
£ — AP L bzt xg)

(4.1)
where
xo=arctanh(|A |/£ ). (4.2)
Doing the integration in (4.1), we obtain
6,
F.(r)=1gelA |? ¢ °(0) [coshxo
() =6lA I’6 €% — A7 sint’,
— arctan(;ﬂ. (4.3)
cosh x,

From (4.3), one finds that near r,, the surface free energy
behaves asymptotically as
F,(r)~(r, — 7)>/% (4.4)

Since the specific heatc, = — T¢°F /3T ?, we find from (4.4)
that the critical exponent o, for the surface specific heat is,
within MFT,

a, =4 (4.5)
Josephson’s law
vd=2—a, (4.6)

which involves the space dimension d, relates the exponent v
for the correlation function and the exponent a for the spe-
cific heat. Substituting v = | from (3.4) and a = } from (4.5),
one finds that Josephson’s law is violated for the surface
phase when the exponents have their classical value, except
for d = 3. When the contribution from fluctuations is in-
cluded, the corrected critical exponents only satisfy Joseph-
son’s law for d < 3. In fact, the width of the region in which
the nonclassical exponents are observed shrinks to zero as d
approaches 3.
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V. CONCLUSIONS

We have presented closed-form solutions, within mean-
field theory, for the order parameter ¢ (z) of the ¢ 6-dominated
tricritical free energy functional for film and half-space geo-
metries. We have discussed the solutions whose properties
depend on the value of the extrapolation length.

Our results may be applicable in calculating the order
parameter profile for a half-space, using the renormalization
group € expansion.?® Bray and Moore”" have also used the ¢
expansion to determine the shift exponent A for usual sec-
ond-order transitions of a thick film. Their technique may be
used to calculate A for a system having a tricritical point.
These calculations are presently being done, and the results
will be reported elsewhere.
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Electrostatic structural transitions in a Yukawa-Wigner solid
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A derivation is supplied for a functional relation between the Fuchs energy € and the Madelung
energy S for a Yukawa-Wigner solid (YWS) in which the usual uniform background of a Wigner
solid (WS) is replaced by a periodic array of Yukawa charge distributions with variable “‘ripple”
parameter A allowing the WS and the empty lattice in the limits of small A4 and large 4,
respectively. It is the zeros of A€, and not of A4S, that are relevant for structural transitions
between two lattices. It is known that 2e™* = S ™5, and Medeiros and Mokross incorrectly
assumed 2¢ = Sfor the YWS. Here it is first shown by elementary means that the relation between
€ and S varies with A, and then the functional relation is supplied for all . When applied to the
bee-fee system, it is found that Ae has two zeros whereas A.S has one not equal to either of those of
Ae. Starting with small A, the sequence of lowest energy structures is bec, fee, and bec if these are
the only two allowed to compete. The equations for the sc case have not been evaluated, but it is
expected that the full sequence for the cubics will be found to be bec, fec, and sc, as this author

reported for the Gaussian—Wigner solid.

PACS numbers: 64.70.Kb, 61.50.Lt, 71.45.Nt

1. INTRODUCTION

This is the second of a two-part report on generalized
Wigner' solids (WS’s) in which the usual uniform back-
ground charge of a WS is replaced with a background pos-
sessing variable “ripple” in the charge. The WS has point
charges Q (of either sign) located at the lattice sites of a Bra-
vais lattice with neutrality being maintained with a uniform
background. The first paper” treats the Gaussian WS (GWS)
in which the background is formed by centering about each
lattice site the charge distribution — Q (p/7)*/%exp( — pr?).
In this paper the charge distribution

— QA */4m)r~'exp( — Ar) is similarly centered to form the
background of the Yukawa WS (YWS). As the ripple param-
eters p and A go to zero the WS is regained, and as they go to
infinity both models become empty lattices. Although these
models are certainly classical and Coulombic, I shall contin-
ue to use the term classical Coulomb lattice (CCL) for the
model composed of one lattice of point charges Q and an-
other identical displaced lattice of point charges — @, which
gives one of the simplest models for ionic crystals. If in the
GWS or YWS models one displaces the centering location of
the Gaussian or Yukawa distributions, respectively, with re-
spect to the lattice of point charges, one secures in the limit of
large ripple parameter the CCL. The derivations I have pro-
vided? for the GWS and shall supply here for the YWS are
easily transcribed for these “displaced” GWS and YWS
models. Thus, this study of the GWS and YWS models pro-
vides the basis for a very wide class of Coulombic models
from which one might select a model more suitable than the
widely used WS. Birman® has used Gaussians in various
ways to improve upon the CCL as a model for the ionic
crystals and Medeiros and Mokross* have used the YWS to
represent phase transitions in systems formed by polystrene
particles in aqueous suspensions as observed by Williams et
al’

The purpose of this paper is to supply derivations of the
Fuchs energy ¢, the Madelung energy S, and functional rela-
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tions between these two. For two competing lattices, it is the
zeros of A€, and not of AS, that determine when transitions
occur as a function of ripple parameter. Recently, 1 report-
ed® some of the final results for the GWS and YWS models,
applied them to the cubic lattices, and pointed out that Me-
deiros and Mokross had correctly calculated S YV but had
incorrectly assumed that 2e¥VS = §Y¥5, Presumably, they

made this assumption in anology with the WS results

2e™S = S5, or perhaps in analogy with the non-Coulombic
Lennard-Jones model. There are at least two ways one can

see, without long derivations, that the relation between € and
S must vary with the ripple parameter.

First, the CCL models obeys €““* = § ““*, which is
suggestive. Second, in the empty lattice limit, for which the
potential @ (r) vanishes, both € and S must diverge to negative
infinity with leading terms that do not satisfy 2e equal to.S. A
discussion of this limit for the GWS has been given in Ref. 2
and used to provide a stringent test of the final results. Here I
shall also use this limit on the YWS to provide a test of the
final results, but I wish first to use it to clarify the definitions
of these two energies € and S and to show that a functional
relation between €"%* and § Y5 must vary with the ripple
parameter A.

As in Ref. 2, define X (r) and S (r) with K = (O) and
S =S5(0)by

P(r)=(P) +SrV/Q+Q/r, (1)
Kr=0®()—-Q%r=Sr+4, 4=0(®), (2

$ = limS (r) = imQ [® (r) - (@) — @ /r]. (3)

Once the @ (r) is defined, the K (r) and S (r) are defined. The
@ (r), K (r), K, and 4 are multivalued via the arbitrary average
potential (@ ), but the S (r), S, and € are unique. Later I shall
have to develop various expressions for S (r) with (r) not equal
to zero or equal to any other vector of the lattice providing
the sites for the point charges, because S (r) is needed in the
derivation of various expressions for € for general 1. Howev-
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er, the situation is much simpler for the empty lattice limit.
Until recently errors were made in applications of
Ewald techniques which are equivalent to incorrectly equat-
ing K and S'in the theory of S, and X (r)and S (r) in the theory
of €; Hall” uncovered the first error the Ihm and Cohen®
uncovered the second for the WS case. The canceling effect’
of these two errors for the WS and the related matter of
“Evjen'? oscillations” for the CCL model of CsCl has been
discussed. From the form of Eq. (2) one sees why K has been
viewed as the energy of interaction of one point charge Q
with all other charge; it is a set of quantities corresponding to
all possible finite choices of (@ ) and contains the singlet S.
Therelation between K (r)and S (r), and hence between K and
S, is not complicated by the arbitrariness of the average po-
tential in the empty lattice limit, because ¢ (r) vanishes in this
limit and the set K reduces to the singlet S. Thus in the empty
lattice limit S is given by the interaction of Q with the local
Yukawa distribution which is very “bunched” up at the
same site. An elementary physics calculation shows that the
leading term in Sis given by — AQ * as A approaches infinity.
The Fuchs energy € is the interaction energy of all
charge normalized to the volume {2 occupied by each point
charge Q. As the local background charge near a point
charge Q bunches up in the empty lattice limit to become a
point charge — Q, the leading term in € arises from two
sources: the interaction of the charge Q with the local
Y ukawa distribution and the interaction of the Yukawa dis-
tribution with itself. The first of these is just S, and the sec-
ond is readily shown to be given by AQ /4. Thus we have

— Q% €WVS~ _310%4, 0<A. (4)

The corresponding results for the GWS are given in Egs. (16)
and (38) of Ref. 2.

Thus it is seen that the Medeiros assumption that
2¢e = § for the YWS does not hold in general for the GWS or
YWS, but it does hold in the WS limit of these two. Figure 1
shows that for the bee-fee system there are two zeros of 4 (2¢)

SYWS~

(bcc-fec)
410

.2 0.4 0.6 0.8 1.0 .2 1,4
w

2r LN AXWS:

FIG. 1. Comparison of the (bce-fec) differences for the Madelung (S = FX')
and twice the Fuchs (26 = FY ) energies reduced by F = Q 2/ '/* as a func-
tion of the “ripple” parameter @ = A (2 '/*/2x) for the regular (WS) and
Yukawa-Wigner solids (YWS). Zeros of 4Y Y™* locate transitions. Middle
portion {dashed) or curves is only schematic.
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neither of which is equal to the single zero of 45.
Section 2 supplies derivations for .S, Sec. 3 treats €, and
Sec. 4 gives further discussion.

2. EXPRESSIONS FOR A{(r) AND S(r) FOR THE YWS

Denote with {7} a Bravais lattice with volume {2 per
lattice point. Denote with {y} its reciprocal normalized by
exp(iy-t) = 1. The charge distribution for the YWS is given
in the sense of tempered distributions'' by

_ Alexp(—Alr—r1j)

plr) = QZ 8r —7) prm— (5)
_% . __or/e
= ;by expliyr), b, i (6)

for 0<A < . Use units such that a point charge Q gives a
potential Q /r and V?@ (r) = — 4mp(r). Through Eq. (2) one
form for S (r) is found from

P ()= (D) _477'Q+Qzexp(—/{|r—~r|),

0<A.
NA? Ir — 7|

(7)

This shows that if one takes @ (r) to be given by the last term
only, one is tacitly assuming that the average potential is

given by the second term, which is equivalent to defining

(@) by the limit as y goes to zero of (47b, )/y*. This corre-
sponds to defining @ (r) as the limit of the sequence of poten-
tials associated with a finite nested sequence of summation
cells® where each summation cell is a proximity cell centered
about a lattice site and each cell possesses a charge distribu-
tion Q [8 (r) — (A 2/4m)r~'exp( — Ar)] centered about its lat-
tice point and extending outside the cell. Equation (2) gives

4mQ?
A’

O0<A
(8)

which is useful for large A. A form useful for small 4 is also
needed. This could be eventually secured by using an inte-
gral transformation'>* on the summand of Eq. (8), but I shall
derive other forms for S (r) for the YWS by methods anaio-
gous to those used in Ref. 2 for the GWS. Then, to establish
consistency, I shall show that the new expressions are equiv-
alent to Eq. (8). This procedure has the advantage of showing
how the limiting process defining @ (r) and X (r) gives rise to
various expressions for (@ ) and how the independence of
S(rjon (@) arises in Ewald techniques.

It is only necessary that (@ ) be treated equivalently
everywhere. For definiteness, choose a summation cell® for
defining @ (r) to be the proximity cell and imagine a finite
array of these centered on lattice sites. Let each cell contain
the charge that an identical cell contains in the infinite
charge array, so the charge associated with a summation cell
does not extend outside the cell. The charge in each cell will
have reflection symmetry (no dipole moment), and a finite
array of them will possess a well-defined potential if a point
charge @ is taken to contribute Q /r. The limit of an infinite
nested sequence of these finite arrays defines the total poten-
tial @ (r) such that (@ ) is given by Eq. (5) of Ref. 9, which we
do not need explicity here. With this limiting process under-
stood on the 7 summation, Eq. (2) gives

[r — 7| r

S(T)ZQZZCXP(_Ah‘_T“ Q2
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K1) § [

Now*T

B B ELI

|r—‘r| 47rw |z —r||z — w|

'{'_200 exp( —A |l'—W|) dSZ (9)

bdr % |z—r|lz—w]
=,si3:z (i Pt
Z - ixg(;;zz)___rl d’z (10)
=Al/i33°z f ),,Q{exp[—v(r—r)]

_A? mexp[r\(z—v(z_r) 1 4%z}

7} P4 A2
/1 © exp[z'y z—vz—r)] ,;
) Frar . 4F (h

where the P01sson summatlon formula (PSF)" is used to
secure Eq. (10) and the lemma of Eq. (A3) of Ref. 7 is used to
get Eq. {11). Following the analysis of Ref. 7, passing the -
summation inside the integral in Eq. (11) brings in the aver-
age potential such that K (r) = S (r) + 4 where

S(lz‘) — J;w(m)—l/Z[i’exp[ _ U(‘l’ _ r)z

_ AT \spexplivr — (YP/4v)]
( ) ; Y+ 42 } (12)
B SWS(r) __}“_2
== 7
- NS [iyr —(y/4
x| "t ’2(1)3“; e f’: 9 gy (13)
Sws(r) 4rA % (& expliyr — s77)
f 0

where S WS(r) denotes the WS limit of 4 = 0. For conve-
nience of reference in the sequel various expressions for § %3
(r) are given in Appendix A. In Appendix B it is shown that

Sir) _ SYS(r)  4mA’&. expliyr) (15)
o’ Q* TV +47)
SWS(I.] _ﬁT_
=5 v

Xfw [1—exp(—SA 2)]5"'6);p(i'\(-r — sy ds.  (16)

Note that the integrand of Eq. (16) is not equal to that of Eq.
(14). The form of S (r) given by Eq. (15) is especially useful in
deriving expressions for € and for small A gives the expres-
sion for S = S (0)
47A Q% &, 1

2 TYV+AY

Next I make connections with Eq. (8) using Eq. (16) and

Eq. {A4) to write

S=85%s_

(17)

Q2 477,Q2
Srj= — =4 —=-
(r) r 0
xj exp( — s 2)3 ‘explivr — 517) ds (18)
o ¥
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__Q Q| 4rQ?
ro nA? n
xf exp( — s %) S explivr — 5p?) ds. (19)
0 ¥
Setting s = 1/4v and applying the PSF gives
Q* 477'Q 2
Srj= —=
(r) r Yl +0
xj ()~ exp( — 4 2/40) S exp[ — vlr — 7] db.
0 T

(20)

For positive A the order of summation and integration in this
equation can be interchanged giving, with the aid of the
transformation'? mentioned earlier, Eq. (8).

Equations (13)}-(17) together with Appendix A provide
checks of the correctness of the derivations in that .S (r) re-
duces to $ ¥5(r) as A goes to zero. For a check in the empty
lattice limit note that Eq. (8) gives

40’ > eXP( Ar)

+ z 21
e Q 21)
from which follows the first expression in Eq. (4); instead of

using Eq. (8), one could also use Eq. (20) to secure the first of
Eq. (4).

S=AQ%—

Properties of AS for two lattices

In order to calculate AS for two Bravais lattices, it is
convenient to use Eq. (21) for very large A and Eq. (17) for
very small 4. These two suffice to locate the zeros of AS (and
later 4e) for the bee-fee system as shown in Ref. 6 and the
present Fig. 1. The mutual reciprocity of the bce and fec
lattices can be exploited by defining mutually-reciprocal,
unit lattices (a,b ) by T = 2 'a, y = 27b/02 /3, and
exp(2mia-h) = 1. Define S = FX, F = Q?%/02 '3,
©=A(2"3/27),and4X = X (a) — X (b). ThenEqs.(21)and
(17) give, respectively,

2mwb)

AX = 2{:’ exp| —027Ta)a) B zb:,exp( _b 2
=4X™ + M, (23)
where
N CATIRNE 1 o 1
e O R R e e M

Equation (24) can be expanded® in a Taylor’s series in ” with
the coefficients involving Lennard-Jones'? sums. This was
done as described in Ref. 6 to compute values of AS for small
o as shown here in Fig. 1. For systems other than the bee-fee
it may be necessary to calculate AX at intermediate values of
w, and then it would be necessary to use the theta function
method as employed by Medeiros and Mokross.* From work
by Foldy'S the X ™5 for the cubic lattices have been calculat-
ed to ten significant figures.

Let us next consider comparing the S’s for two Bravais
lattices that are not reciprocally related. Denote the associat-
ed unit lattices with a and a’, chosen such that
AX = X (a) — X (a’) yields AX V3 as negative. In Eq. (22) re-
placeband a’, and in Eq. (24) replace aby a’. One can still use
Eq. (24}, so modified, with a Taylor’s expansion to sketch AX
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for small w. Using just first-neighbor contributions in the
modified Eq. (22), one can quickly determine whether AX
approaches zero from above or below as w approaches infin-

3. THE FUCHS ENERGY

ity. In the latter case 4.5 probably does not possess a zero for
finite w; this was found to be the case for the fcc-sc and bee-se
systems in the GWS model,>® where SC denotes simple cu-
bic.

The Fuchs energy € is independent of the particular summation cell® one uses except that the same summation cell must
be used everywhere. I shall use the same summation cell that I used in Eq. (9), and my derivation parallels that given in Ref. 2
for the GWS which in turn parallels that given in Ref. 9 for the WS. The definition of the Fuchs energy is

ﬁz 1 q& At expl —A(z—w|+ [z —wW[)] ;5 3,
Q? v {” zz Jogg’ |AT + Az||z — w|{z’ — w'| dizd’z
& &4 exp( — /1|Z—W|) 3
ZZ%L% At alEw z] 2
= _1_ S expiy-z + iy -Z') 3 g3
N [ZZ’ zz JJZZVZ+/12)V'2+AZ)|AT+AZ|dZdz
iil Jzyz expliv-z) ] 26)

+A%)AT + 2|

P

where wand w’ are 7 lattices and PSF has been used to secure Eq. (26) from (25). Setting A equal to zero regains Eq. (6) of Ref. 9
for the WS. Next group together the terms given by T = 1’ in Eq. (26) to give

expliy-z + iy'-z) d’z
A2y’ + A7)y + A7)

+ hm iz

T T#ET 7'

(remaining terms).

In the next step I shall change the summation limit on
the 7 summation to infinity. The proof of its validity is exact-
ly the same as given for the GWS in its Appendix and will not
be repeated here. With this step justified, one can with a
change to summation over 4 r write the last term in Eq. (27)
as
i [ 1 i expiy-z) 4

: v +A%) T+

T

/l“J'J expliv-z + iv'-z) o ]
+ 2 d'zd'z’|.
n? 22(72+/1 N2+ 437 + AT
(28)
Putting this into Eq (27) and rearranging the terms gives
K (z)expliy-z)
2e=K — d3z
2;, Y +A?
_explivz)
z. (29)
ZZ(f A

This may be simphﬁed, and e shown to be independent of the
average potential, by substituting K = S + 4 and

K (r) = §{r) + 4, whichleads tocancellation of thetwo terms
containing 4. Thus Eq. (29) holds with X replaced by .S and
K (r) replaced by S(r), giving

2e =85 — i(yz+/12)[ﬂJS(z)exp(z'y z)d z]
_sz (72+/12)[0J’exp(w Laz ] 0
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2 )

exPl‘YZ) d3

(27)

The second term in Eq. (30) can be simplified by using Eq.
(15) to give

%LS (z)expliv-z) d °z

47Q A2
2P+ A%
= —}Z—JOS YSz)dz, y=0. (31)

= ljS WS(z)expliy-z) dz — y#0
2

Note that the integral of § V3(z} over the centered summation
cell is equal to the negative of the integral of 2~ ' over the cell,
substitute this into Eq. (30), and find that

4rQ’ & Al
27’21’24'/1

[—-J‘Sws(z)exp{w z)d z]

2e=5 +

- /1
z(rzwlz)

—¢ i(fwt?)[njexpw 2 z] (32

To simplify the last two terms, set A equal to zero in Eq. (18)
to give

S¥S(r) = 4mQ* f Zexp(syz 4 iyr)ds — %~ Qz . (33)
and substitute thlS into Eq. (32) to secure
_ 4rQe 1 A\, ([ A?
2e=5+-, Ey:yz[(yz+/12) (72+/12)] (34)
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Bt
41'rQ2

2 (35)
4 72 +47%

where Eq. (17) 1S used to get Eq. (35), which is useful for small

A.

One can find directly from Eq. (35) an alternate form
useful for large A,but I shall first give a functional relation
between € and .S and then use it to secure the alternate ex-
pression for € from Eq. (21) for S.

4. THE FUNCTIONAL RELATION AND DISCUSSION

Define 2¢ = FY and use the notation of Eq. {22) to write

2 0)4

- z,,: (mb2)b? + )
(36)

@

Y=X_; (70 2B + )

Also substitute into Eq. (17) rewritten as

w2

—_ ws __ -
X=X Eb:(ﬁbz)(b2+w2)’

(37)

which yields

Y=x"_-2% o +3 AT
LT A+ o) 5 (b bE + 0¥

Now it is evident that ¥ and X obey the functional equation

y=x4+294 (39)
2 da)
If we apply this functional equation to Eq. (21) for S rewrit-
ten in terms of X as

1 . exp(
—+
Tw* ;

— 27wa)

X= =270 — (40)

a
we find

Y - 37w + ; EE(——:(-J—Z—@)— - 7rw;'exp( — 2nwa).
(41)

An immediate check on the accuracy of Eq. (39) and (41) is
given by the empty lattice limit for which

ore~ —31Q%4, {42)

in agreement with Eq. (4) found by elementary means.

Additional expressions for Y follow from setting r equal
to zero in Eqgs. (12)-{16) and (18}-(20) and applying Eq. (39)
also holds with X replaced by AX and Y replaced by 47,
where the 4 refers to the difference of a quantity evaluated
on two lattices.

For the bee-fee system, Fig. 1 shows how 4 Y varies with
. Note Y has two zeros whereas AX has only one. Medeiros
and Mokross* correctly found the single zero of AX but in-
correctly assumed that 4Y = AX. [ used Eqs. (37) and (38)
for small w and Eqs. (40) and (41) for large w; it was not
necessary in finding the zeros to calculate the curves in the
intermediate domain indicated schematically by the dashed
lines.

For other systems the zeros may fall in the intermediate
domain, and then it may be necessary to use the theta func-
tion method (TFM), which for the YWS is slightly more

Y~ — 3nw,
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complicated than for the WS. The TFM as used to evaluate
S™5(r) and S ™S is described briefly at the end of Appendix
A; one way to use the TFM to evaluate S (hence X or 4X ) is
given by Medeiros and Mokross, which one could also use on
Yor AY. For A48, their procedure amounts to working with
Egs. {18) and (20). I should add that at small it may be
advantageous to separate out 4.5 WS in both equations, i.e.,
work with Eq. (16) instead of Eq. (18).

From Eq. (39) it is seen that 4 ¥ equals 4X at the ex-
trema of AX, and

dAY _ o d?AX
do 2 do?

Thus at the single maxima of of AX for the bee-fee system in
Fig. 1 one has that 4 Yequals A X and 4 Y has a negative slope
there. Also at the extrema of A Y one has

2
3ﬂ = — wd AZX , at extrema of AY. (44)

dw dw

at extrema of 4X. (43)

Finally note that although the Y ’s and X ’s are tightly coup-
led for the GWS and YWS models through functional equa-
tions, the functional equations differ.

APPENDIX A

This appendix contains various expressions for S 5(r)
from which S %$(0) = S VS may be evaluated.
Take Eq. (12) and set A equal to zero to write

(on—ar-m- 3o
(A1)
f (o)~ 1/
s o2
— exp( — vrz)} dv, (A2)

where Eq. (A2) follows by the PSF.'* Next set v = 1/4s,
which gives

S WS(r) — 47TQ :
ﬂ .
Xf [i'exp(iy-r — s

_ Dexp(—r/4s) ds (A3)

(4rs)>/?

If ré{r} one can also write
2 4 LN .

SWr) = — QT + T.rQ—QL 27" expliy-r — sy7) ds, (A4)

but one cannot interchange the summation and integration
in Eq. (A4), because that would give a conditionally conver-
gent expression. To obtain S V° just set r = 0 in Egs. (A1)-
(A3).

To evaluate S VS(r) and S V° use the integrand of Eq.
(A1) over the domain 0 <d<v < « and the integrand of Eq.
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(A3) over the domain (1/4d )<s < «. Then in each integral
interchange the order of summation and integration. The
sum of the two parts can be readily evaluated with a few
terms from each part provided d is chosen to “balance” the
contributions from each part. A fairly good choice is given
byd =722

APPENDIX B

The purpose of this appendix is to prove Egs. (15) and
(16) follow from Eq. (14), i.e., to prove for positive A that the
defining expression

J 2. % expliy-r — 577 (B1)
Y +4?
can be written also in the two ways

= A7 exp A~ expliyr)
I= B2
; PP +4y (B2)
I= J i [1 — exp(sA %) ]expliy-r — s7°) ds. (B3)

4

Note that the integrands of Eqs. (B1) and (B3) are not equal.

If one can establish that interchange of the order of
summation and integration is legitimate in Egs. (B1) and
(B3), the proof is immediate; then Eq. (B2) follows directly
from Eq. (B1), and with the aid of partial fractions Eq. (B3)
follows from Eq. (B2). This device is, if justified, much
simpler than applying the PSF to Eq. (B1).

Divide the domain of integration into 0<s<é and
8<s < «. The interchange is clearly justified for the second
domain. Thus it is necessary to prove that in the limit of §
approaching zero the following two integrals vanish:

A? exp iy — sy7)
ds, (B4)
0 ; }/ + A7
o]
S'[1 — exp( — sA Jexpliyr — s7%)] ds. (B5)
0y

It suffices to treat the notationally simpler case of r = 0
and prove that in this limit J and L vanish where

S o ) A 2
J= J. ———exp( — sy?) ds, (B6)
0 2,:’ Y 4+A- P! 4
6@
= | Y'[1 —exp({ —si?)]lexp( —sy?) ds. (B7)
0y

Consider J and set s = 8x giving

J=5f[—1+i'-—z—%exp(—6xyz) dx,  (BS)

lim J = limé z ————exp( —

5 0 50 o,,}/

— 6xy7) dx. (B9)
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Instead of deriving the PSF expression for the sum inside the
integral of Eq. (B9), it is only necessary to recall that the
“term at the origin” in a PSF expression is given by the inte-
gral approximation to the sum. Thus for the present pur-
poses replace the sum by

J‘J‘J‘ exp( — 8xu”) — Sxu?) d S, (B10)
w4 A7
where v = 87°/42. Then it follows easily that
limJ = lim¥™ V8 _ ¢ (B11)
5 -0 8 -0 v
Next consider L and again set s = §x giving
1
L= 6[ [1— exp{ — 64 °x] exp( — 8¥°x)dx. (B12)
0 3

Since A is positive but otherwise arbitrary, fix it and then
choose 84 2«1. Then

xi'exp(

mL = limA 28> — 8y%x) dx (B13)
& -0 & -0
— limA 262 ( 7 )3’2dx =0, (B14)
Y b v\ dx

when the first term in the PSF expression for the sum in Eq.
(B13) has been used in Eq. (15), i.e., the integral approxima-
tion to the sum.

This completes the proof.
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Ellis, Maartens, and Nel have discussed the viability of static spherically symmetric (SSS)
cosmologies in general relativity, and in doing so they have studied some of the mathematical
aspects of the field equations in that situation. We investigate further these mathematical aspects.
Since the field equations correspond to those studied for stellar models, this question is related to
previous investigations in that context. In particular, it is shown that conditions at the center of
symmetry do not always uniquely determine the space-time geometry; this has relevance to the
numerical investigation of stellar systems. Finally, in view of the need to generalize SSS models,
some remarks are made on the possibility of relaxing the staticity condition in the case of models

that are shear-free.

PACS numbers: 98.80.Dr

1. INTRODUCTION

In a recent thought-provoking article, Ellis, Maartens,
and Nel' consider the consequence of adopting an uncon-
ventional interpretation of the observed isotropy of the ga-
lactic redshifts. Can the observations, they wonder, be ex-
plained by means of simple static spherically symmetric
models, without invoking any of the unverifiable philosophi-
cal arguments (such as the usual cosmological principles)
which lead to spatially homogeneous cosmologies? They
consider general relativistic static spherically symmetric
models, and examine theoretical aspects of observations that
could be performed, for various possible values of the some-
what repungnant cosmological constant, A. The line-ele-
ment is of the form

ds’ = — gr)dt* +dr' + f3(r)d6” + sin’0 d ?),

and the source of the gravitational field is assumed to be a
perfect fluid. Under these circumstances, the field equations
of general relativity,” viz.,

Gy +Ag, =T,
become
fll gll Igl
L4 418 —p_ 4, (1.1a)
S g
2!/ fll 1
Lyl = —u-a, (1.1b)
Sor o r
and
¥g  f7 1
—— 4t ——==p—A, {1.1¢)
N/ o f

where a prime (') denotes differentiation with respect to 7; the
fluid flowlines are tangent to the unit vector ‘' = g~ '8, and
4 and p are, respectively, the energy density and pressure of
the fluid. Equations (1.1) are compatible whenever the Bian-
chi identities G 7 ; = O are satisfied, i.e., when

W +plig'/g) +p =0, (L.2)

which is the radial equation of hydrostatic support.
Ellis, Maartens, and Nel' next consider the mathemat-
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ical features of the differential equation system (1.1), observ-
ingin particular the invariance under the 2-parameter group
of transformations

(1.3a)
(1.3b)

where « and A are nonzero real numbers. For physical rea-
sons discussed in their article, they suppose that the matter
has an equation of state p = Ju. The authors state, somewhat
ambiguously, that, with this equation of state, it does not
seem possible either to obtain general analytic solutions to
Eqgs. (1.1), or to obtain the qualitative behavior of the solu-
tions by use of phase-plane methods “except in the cases
A=0;u=0,0r A =pu". Accordingly, the system is exam-
ined numerically. Some ambiguity arises, first because, from
this remark alone, it is not clear as to which possibility (ana-
lytic solution or qualitative behavior) the exceptional cases
refer, and secondly because of the manner of labelling the
three exceptional cases. The situation is somewhat clarified
later on, when the authors consider the nature of the solu-
tions as being dependent on two quantities, viz., A and u,,
the value of the energy density along the central world-line
r = 0 (for physical reasons, u, is assumed to be nonnegative;
in the mathematical analysis it is tacitly assumed that y,, is
finite, and indeed when the physical applications are consi-
dered this is explicitly stated). First, three specific cases (the
expectional ones) are examined. They are at this stage more
precisely labelled as

g—Ag,

r—k !

r, ST, pokPu, A—iPA, p—iip,

(1) A = py = 0. This is Minkowski space-time.

(2) A #0, py = 0. This is de Sitter space-time if A > 0,
and anti-de Sitter space-time if A <0 (see, e.g., Hawking and
Ellis’: this corrects the statement made in Ref. 1).

{3) A = > 0. This is claimed to be the (generalized)
Einstein static universe.
The authors state ““in the other cases, we have to rely on nu-
merical integration.” It now becomes clear that the authors’
first manner of labelling (A = 0; x = 0, and A = yu) was im-
precise, that they regarded numerical integration as being
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required in all other cases, and that they believed that cases
(1)-(3) were the only ones capable of analysis either by exact
solution or by phase-plane methods (or both). Furthermore,
the authors’ more precise labelling involves the quantity u,,
and it is tacitly claimed that if u = O then £=0, and if

Ho = A thenu=A.Theauthors now resume their analysis of
the system (1.1) by means of numerical methods, leading to
an exhaustive classification of all possible choices of ordered
pairs (1, A; 10>0), and invoking the additional cases

(4) A >po>0,

(5)po>A>0,
and

(6) A<O0, o #0.

From the physical point of view of applicability to the SSS
cosmologies, Ellis, Maartens, and Nel require that the cen-
tral energy density p, be strictly positive, and they also re-
quire that initial values of the red-shift near the center be
strictly positive [from which follows the inequality

A >py>0, and so case (4) is the only candidate for applica-
tion]. Nevertheless, Ellis, Maartens, and Nel take pains to
study the properties of all six cases, because at that stage they
are concerned (as I am here) with purely mathematical
aspects of those cases.

In this article, I wish to make some further comments
regarding the mathematical analysis of the system {1.1). This
system is first reduced to a system of three first-order ordi-
nary differential equations. Since p = p(r) and u = p(r), ei-
ther u is identically constant or there is an equation of state
p =plu). The case where p is identically constant includes
the interior Schwarzschild solution, and is discussed else-
where.? I shall be concerned chiefly with the case where
p = plu), with the additional assumptions ¢ + p=£0 and
dp/du=£0 [the former represents a reasonable energy condi-
tion; the latter is enforced to avoid the case where
g{r)l=const, since then the fluid flow is geodesic and the met-
ric is Friedmann—Robertson-Walker,” and is in fact a gener-
alized Einstein static model}. An exception to this, which
will be discussed, involves generalizations of cases (1) and (2)
above, in which, under special conditions, the constancy of
and p is proved (rather than assumed). It is pointed out that if
the equation of state is of the form p = (y — ) (a y-law
equation of state; y is a constant, ¥#0, ¥ 1), a qualitative
(phase-plane) treatment is obtainable in the special case
when A = 0, and that further exact solutions are known in
that case. From the viewpoint of ultimate application to the
SSS models alone, this special case is admittedly unphysical,
and the exact solutions exhibited are inapplicable, since they
possess only one center of symmetry, which is irregular.
Nevertheless, in keeping with the purely mathematical
aspects of the analysis of Ellis, Maartens, and Nel,' it is of
interest to examine the A = O case [cases (1) and (6) of Ellis,
Maartens, and Nel], and the role of the special exact solu-
tions. Indeed, the results are also of interest to consider-
ations outside the realm of SSS cosmologies, i.e., to the study
of static stars. It is also possible to replace an irregular cen-
tral region of the special solutions by matching appropriate-
ly to solutions that are regular at the center, and from this
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viewpoint the special solutions have more physical signifi-
cance.

In Sec. 3, we consider how conditions at the center of
symmetry (r = 0) determine the solution elsewhere (at 7 > 0).
The tacit claim that if p = Ju, p, = 0 implies u=0 is easily
proved, but it is not at all clear how the condition p, = A
implies y=A, in which case the solution is the Einstein static
model, generalized to the equation of state p = Jju. We do
show that there are certain equations of state for which the
appropriate central condition on the energy density does not
uniquely generate the corresponding generalized Einstein
static model, although the situation when p = ju remains
obscure. This question is not trivial, since the usual coordi-
nate and tetrad bases are not defined at the center, and as a
result the usual theorems relating to the uniqueness of solu-
tions of ordinary differential equations do not apply.

Some further remarks, concerning the application of
nonstatic spherically symmetric models to the observation-
based cosmology of Ellis, Maartens, and Nel, are provided in
Sec. 4.

2. THE SYSTEM OF EQUATIONS (1.1)

The question of static spherically symmetric geometries
in general relativity is often considered in the context of stel-
lar, rather than cosmological, situations. It is convenient to
use the function f(#) as an alternative radial coordinate. Be-
fore doing so, however, we briefly discuss the case when this
is not possible, i.e., when f'==0. We first note that if
1 + p==0, it follows from the field equations that the space-
time is an Einstein space, and hence” is either Minkowski, de
Sitter, or anti-de Sitter space-time. In particular, if f'=0, we
obtain from (1.1b) and (1.1¢) that u 4+ p=0, and de Sitter
space-time results. Henceforth we shall assume u + p£0 so,
a fortiori, f'5£0. Following Kramer ez al.,” but including the
cosmological constant, we have from (1.1b),

@y _ 2] dm _ 1 Ay
(d{) =1 7 where 72 w+A)f
(2.1a)

and, by (1.1c) and (1.2),

(7= 2m) .~ piam + (p — A)/) (2.10)
Let M =m/ f,D = uf*, P=1pf* and A = JAf*. Then

dM 1

aM_ 1 pia—my,

i f(+ )
and

a _ 1,5

ar f

Moreover, from (2.1b),
ap _ 1L
a f

whenever dp/dp 0. This now provides a system of three
first-order ordinary differential equations. If we further as-
sume that p = (y — 1)y, where y is a constant satisfying
y#0, y#1, and if we write r = In £, we obtain the autono-
mous system

(D+PYP+M—A)
dp/du

!
L —_4aM) —
1—2M[D(2 M)
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dt  1—2M y—1 1
(2.2a)
M pii-M (2.2b)
dt
and
A _ s, (2.2¢)
dt

This system generalizes that considered previously,®’ wher-
ein A = 0 (so A = 0) and the system is examinable by phase-
plane analysis. The use of the variables D, M, and 4 in deriv-
ing Eqgs. (2.2) is suggested by the invariance property (1.3b)
above, since D, M, and A are each invariant under (1.3b). The
equation of state p = (y — 1)u is also of a form which re-
spects (1.3b). [Note that it is possible to obtain a similar sys-
tem of autonomous equations directly out of the system (1.1),
using variables constructed from fand g and their deriva-
tives, which are invariant under the transformations (1.3).
The alternative approach used herein is thought to provide
more physical insight, since the quantity m( f) is related to
the total mass within a radius /] The denominator 1 — 2Min
Eq. (2.2a) does not vanish identically, for, if it did, then
2m==/f'in (2.1a), and so f'=0, a contradiction.

It is of interest to observe that the system of Eqgs. (2.2)
has exactly two fixed points, where the right-hand sides van-
ish identically. These are given by

(i) D =M = A = 0. This corresponds to Minkowski
space-time, since by (1.1c) and (2.1a), f"*=1 and g'=0.

(i) D =M =2y — 1)/[(¥ + 2)* — 8]; A = 0. In this
case the energy density u is
2D 4y—1) 1
k= T s 72
f r+2-87f
Whereas the solution (ii) has been ascribed to Misner and
Zapolsky,>®? it is a special case of the class VI solutions of
Tolman'® and has been discussed by Wyman'' and others.*
It does not have a regular center at f= 0 (since u— oo as
J—0), and it has only one center, since

dfz?
=] =1-2M #0.
(d{) ! >

Astrophysically, it is the relativistic analog of a special sin-
gular solution of Chandrasekhar'? for certain Newtonian
polytropes. The functions fand g in the metric can be deter-
mined directly by integrating (1.2) and (2.3).

The two solutions (i) and (ii) above are special solutions
valid when A = 0. In the general A = O case, the system (2.2)
reduces to one that has been examined by phase-plane meth-
ods.® It has been shown that there are only two solutions of
interest, i.e., in which m = 0 when f= 0. One is the
“Misner—Zapolsky” solution, and the other is one which, as
far as I am aware, is not known in exact analytic form. It
possesses the property that u is finite and nonzero at f = 0,
and it extends out to infinite values of / (and infinite proper
distance), where it approaches the Misner—Zapolsky solu-
tion. It corresponds to the usual static spherically symmetric
stellar model with a regular center [and with an equation of
statep = (¥ — 1)u]. Details are provided in Ref. 6. Treated as

(2.3)
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a cosmological model, it represents a complete unbounded
universe with negative red-shifts as observed from the cen-
tral world-line f= O (cf. Refs. 1 and 13).

A full qualitative investigation of the system (2.2) would
be of great interest, although presently available mathemat-
ical techniques appear to be incapable of providing this. Al-
ternatively, we could search for situations in which the sys-
tem (2.2) can be reduced to a subsystem of two equations, as
inthe A = 0 case we have just discussed. One example of this
occurs if ¥ = 0, for then the variables D + A and M can be
used; however, this case is not of physical interest since the
matter would then satisfy the unrealistic equation of state
# + p=0. In fact, I suspect that there are no tractable sub-
systems of (2.2), in addition to those already mentioned.

3. CONDITIONS AT THE CENTER

From Eq. {1.2), it follows that if p = i then
ug* = const, and so it is clear that if z,, the central value of
the energy density, is zero, then ££=0. This result readily
generalizes to y-law equations of state, but its generalization
to other equations of state remains obscure. The difficulty
arising here is due to the fact that the system of field Eqgs.
(1.1)and (1.2)is not regular at the center, » = 0. As a result of
this, the usual uniqueness theorems for solutions of systems
of ordinary differential equations no longer hold. It does not
seem possible to “‘regularize’ the equations in such a way as
to avoid this difficulty, which is also very apparent when one
considers the orthonormal tetrad formulation of the prob-
lem, there being no regular orthonormal tetrad field adapted
to the spherical symmetry in a neighborhood of a central
point.

I am not aware of any proof that when p = {u, o = A
implies u=A. Again, the same difficulties are encountered
at r = 0. When p = Ju, the case u=A is the Einstein static
model, generalized to the given equation of state. For a gen-
eral equation of state, p = p(u), and given cosmological con-
stant, the Einstein static model would be characterized by
the condition i + 3p=2A, and it is not clear when the cen-
tral condition o + 3p, = 2A necessarily gives rise to only
this case. It is possible to show that, for certain equations of
state, the central condition w, + 3p, = 24 is satisfied by so-
lutions other than the Einstein static solution, i.e., at least for
certain equations of state, the usual conditions at the center
(r = 0) do not uniquely determine the space-time geometry
elsewhere (at r>0). This is an important point, because the
standard numerical procedures used in analyzing static
spherically symmetric systems in general relativity (see, e.g.,
Ref. 14) involve integration from the center, and it is clearly
highly desirable to be able to demarcate those cases in which
uniqueness ensues. The following argument shows that there
are certainly situations when, for a given equation of state,
the space-time is not uniquely determined by the usual con-
ditions at the center.

Equations (1.1a)—(1.1c) are equivalent to (1.1b), (1.1c),
and (1.2). Let f(r) be an arbitrary function of r, analytic and
odd onsomeinterval ( — R,R ), R > 0; we suppose that fsatis-
fies the conditions of regularity at the center = 0, so that’

f(r)—0, f'(r)—1 and f"(r)/f(r)—finite limit as —0
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{so fis expanded about the origin in the form
fin=r+2z_, ay ., 7**"). Thus (f* — 1)/f*—6a, as
r—0, and (f'* — 1)/f?is analytic (and even) on ( — R,R }. By
Eq. (1.1b), it follows that i is analytic (and even)on{ — R,R ).
We may expand p about the origin in the form
wlr) = Zg_ oo X, where uy = — A — 18a, and
i, = 5(3a,* — 10as). Eliminating g’/g between (1.1c) and
(1.2), we have
12
p'=(”+p>i,(f . 1~p—/1). (3.1)
2 /N f

Since the right-hand side of (3.1) is analytic in p and r, it
follows'® that p is analytic, with p, arbitrarily specifiable.
Choose p, such that g, + p,7#0. Then, writing (1.2) in the
form

g ==, (3.2)
©+p
we can apply the analyticity argument to (3.2), and conclude
that g{#) is analytic in r, with g(0) freely specifiable. We may
set g(0) = 1, without loss of generality. Clearly g satisfies the
conditions of regularity at the center » = 0, so that'

g(r)—finite nonzero limit, g'(r)—0 as r—0,

the latter following by letting »—0 in (3.1) and (3.2).

We now suppose that p, is chosen so that
Lo + 3po = 24, and that 10as7# 3a,?, so that u,#0. Then,
fixing the values of alla,, , ,, we have a solution of Einstein’s
field equations in which p'5£0 (since u,0), and in which
p'#0 [since p'=0 requires, by (1.1} and (1.2), u + 3p=24,
implying '=0, a contradiction]. The matter is inhomogen-
eous, with an equation of state p = p(u) obtained by eliminat-
ing r from the relationships p = p(r) and gz = u(#). On the
other hand, given this specific equation of state, there is an
Einstein static model with the same central values of £ and p,
and with the same value of the cosmological constant, and
this is of course spatially homogeneous, and therefore dis-
tinct from the previous solution.

Thus, for a fixed equation of state and cosmological
constant A, it does not always follow that the central values
of the energy density and pressure will uniquely determine
the solution. It would be valuable to understand the clear-
cut circumstances under which, for any fixed equation of
state and cosmological constant A, one obtains uniqueness,
but such an investigation is beyond the scope of the present

paper.

4. NONSTATIC SPHERICALLY SYMMETRIC
COSMOLOGIES

Ellis, Maartens, and Nel' speculate that some of the
interesting features of static spherically symmetric models
might be preserved in expanding models, which would
moreover be more realistic. The simplest generalization
which preserves spherical symmetry and yet introduces ex-
pansion occurs when the world-lines of the galaxies have no
distortion (i.e., no shear), since the static case is character-
ized by requiring that both the shear and the expansion van-
ish. Now Mansouri'® has recently shown that when the cos-
mological constant A is zero, shear-free spherically
symmetric perfect fluid general-relativistic space-times in
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which p = p(u), 4 + p=£0, and in which there is a comoving
timelike hypersurface of zero pressure are necessarily either
static or spatially homogeneous and isotropic Friedmann—
Robertson-Walker models. Glass'’ has presented an alter-
native proof of Mansouri’s results, in which the arguments
are made somewhat more transparent. Further clarification
and generalizations of Mansouri’s result have been obtained
by Collins and Wainwright.'® It may be suspected as a conse-
quence of Mansouri’s result that the condition related to the
timelike hypersurface of zero pressure could be relaxed, i.e.,
that (with A = 0) there could be no expanding shear-free
spherically symmetric perfect fluid general-relativistic mod-
els with an equation of state p = p{u}, other than the Fried-
mann—-Robertson-Walker models. However, this is not the
case. One such set of solutions, having A = 0 and ascribed to
Wyman,'” appears in the book of exact solutions by Kramer,
Stephani, MacCallum, and Herlt.* Contrary to the claims in
Ref. 4, this set is not the most general one [the special case
A (t)=0 in (14.35) of Ref. 4 has been overlooked (in 14.57)
when p = p(u), although Wyman'? considered it*°]. These
solutions are easily generalized to the case when A 70 (see
Refs. 18 and 19). In addition, there is an analogous set of
solutions are easily generalized to the case when A #0 (see
Refs. 18 and 19). In addition, there is an analogous set of
solutions with plane symmetry. Together with the spatially
homogeneous and isotropic Friedmann—Robertson—-Walker
models, these plane symmetric and spherically symmetric
models comprise the only expanding irrotational shear-free
perfect fluid general relativistic models with an equation of
state p = plp) in which p + p=%0. Proofs of these results ap-
pear in Ref. 18, and rely to some extent on an article by
Barnes,”’ which treats shear-free irrotational perfect fluids
in general relativity. What is not clear from Barnes’ paper is
whether there actually exist anisotropic solutions which ad-
mit an equation of state, p = p(u), and, if so, what those solu-
tions are. This question is completely answered in Ref. 18.
ticularly with regard to the role that the inhomogeneous
spherically symmetric family could play in the observation-
based philosophy-free study of cosmology initiated by Ellis,
Maartens, and Nel.!
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